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Abstract

In an attempt to make algorithms fair, the machine learning literature has largely focused on

equalizing decisions, outcomes, or error rates across race or gender groups. To illustrate, consider

a hypothetical government rideshare program that provides transportation assistance to low-

income people with upcoming court dates. Following this literature, one might allocate rides to

those with the highest estimated treatment effect per dollar, while constraining spending to be

equal across race groups. That approach, however, ignores the downstream consequences of such

constraints, and, as a result, can induce unexpected harms. For instance, if one demographic

group lives farther from court, enforcing equal spending would necessarily mean fewer total

rides provided, and potentially more people penalized for missing court. Here we present an

alternative framework for designing equitable algorithms that foregrounds the consequences of

decisions. In our approach, one first elicits stakeholder preferences over the space of possible

decisions and the resulting outcomes—such as preferences for balancing spending parity against

court appearance rates. We then optimize over the space of decision policies, making trade-offs

in a way that maximizes the elicited utility. To do so, we develop an algorithm for efficiently

learning these optimal policies from data for a large family of expressive utility functions. In

particular, we use a contextual bandit algorithm to explore the space of policies while solving

a convex optimization problem at each step to estimate the best policy based on the available

information. This consequentialist paradigm facilitates a more holistic approach to equitable

decision-making.

1 Introduction

Statistical predictions are now used to inform high-stakes decisions in a wide variety of domains.

For example, in banking, loan decisions are based in part on estimated risk of default [Leo et al.,
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2019]; in criminal justice, judicial bail decisions are based on estimated risk of recidivism [Cadigan

and Lowenkamp, 2011, Latessa et al., 2010, Goel et al., 2018, Milgram et al., 2014]; in healthcare,

algorithms identify which individuals receive limited resources, including HIV prevention counseling

and kidney replacements [Wilder et al., 2021, Friedewald et al., 2013, Obermeyer et al., 2019]; and

in child services, screening decisions are based on the estimated risk of adverse outcomes [Brown

et al., 2019, Chouldechova et al., 2018, De-Arteaga et al., 2020, Shroff, 2017]. In these applications

and others, equity is a central concern. In particular, the machine learning community has proposed

numerous methods to constrain predictions to achieve formal statistical properties, such as parity

in decision rates or error rates across demographic groups [Barocas et al., 2023, Chouldechova and

Roth, 2020, Corbett-Davies et al., 2023, Chohlas-Wood et al., 2023a].

To illustrate this traditional approach to designing equitable algorithms, consider a government

agency that provides free rides for people to get to court [Brough et al., 2022]. Missed court dates

can lead to severe penalties, including incarceration, and so improving court appearance rates can

reduce social harms [Chohlas-Wood et al., 2023b]. When designing this program, one might first

use historical data to estimate the effect of a ride on increasing each person’s likelihood of appearing

at court, as well as the cost of providing them with a ride. Then, in an effort to distribute benefits

fairly, one might allocate assistance to those with the highest estimated benefit per dollar while

constraining per-person spending to be equal across demographic groups. The implicit hope in past

literature is that one achieves fairness by imposing an axiomatic constraint on decisions: spending

parity.

Although intuitively reasonable, axiomatic approaches to fairness can cause unexpected harms. For

example, imagine members of one group live farther from the courthouse, making it more costly to

provide them rides. Enforcing equal spending across groups would typically result in fewer rides

overall, and accordingly lower appearance rates. More generally, traditional axiomatic approaches

to fairness typically do not consider the downstream consequences of constraints, and thus fail to

engage with the difficult trade-offs at the heart of many policy problems.

We propose an alternative, consequentialist framework to algorithmic fairness. In this framework,

rather than imposing fairness axioms, one begins by eliciting stakeholder preferences over the

space of potential decisions and resulting outcomes. For example, in designing our hypothetical

transportation program, one would assess the degree to which stakeholders are willing to trade court

appearances for reductions in spending disparities across groups. Then, using these preferences,

we compute a decision-making policy with the largest expected utility while adhering to budget

constraints. Given historical data on decisions and outcomes, we show that optimal decision policies

can be efficiently derived for a large and expressive family of utility functions by solving a linear

program (LP).

We further show how to efficiently learn optimal policies while rolling out new programs in the
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absence of historical data. Our approach here is inspired by the success of Thompson Sam-

pling [Chapelle and Li, 2011] and optimism-under-uncertainty methods [Auer et al., 2002] in multi-

armed bandits. In contrast to the standard contextual multi-armed bandit setting, we consider a

multifaceted, structured objective to account for complex preferences and budget constraints inher-

ent to many real-world applications. As such, our actions at each iteration are guided by solving

an LP as above.

The rest of our paper is structured as follows. In Section 2 we review the related literature, con-

necting and contrasting our approach to ideas in fair machine learning, fair division, multi-objective

optimization, and reinforcement learning. In Section 3 we illustrate the trade-offs inherent to many

policy problems—and the concomitant benefits of a consequentialist perspective over an axiomatic

approach. To do so, we draw on client data from the Santa Clara County Public Defender Office

to consider the costs and benefits of a hypothetical transportation assistance program. We also de-

scribe the results of a survey that gauged stakeholders’ willingness to sacrifice court appearances to

reduce spending disparities across race groups. Given such preferences, as well as historical data on

outcomes, in Section 4 we formally state and solve the corresponding policy optimization problem.

In Section 5, we theoretically derive sample complexity bounds on learning optimal policies in the

absence of historical data. Finally, in Section 6, we introduce and evaluate an adaptive approach

to learning optimal policies, combining contextual bandits with the optimization solution described

in Section 4. We end with some concluding thoughts in Section 7.

2 Related Work

Our work draws on research in algorithmic fairness, fair division, multi-objective optimization, and

contextual bandits with budgets—connections that we briefly discuss below.

Over the last several years, there has been increased attention on designing equitable machine learn-

ing systems [Buolamwini and Gebru, 2018, Raji and Buolamwini, 2019, Blodgett and O’Connor,

2017, Caliskan et al., 2017, De-Arteaga et al., 2019, Ali et al., 2019, Datta et al., 2018, Obermeyer

et al., 2019, Goodman et al., 2018, Chouldechova et al., 2018, Koenecke et al., 2020, Shroff, 2017,

Chohlas-Wood et al., 2023a], and associated development of formal criteria to characterize fair-

ness [Barocas et al., 2023, Chouldechova and Roth, 2020, Corbett-Davies et al., 2023, Gupta et al.,

2020]. Some of the most popular definitions demand parity in predictions across salient demo-

graphic groups, including parity in mean predictions [Feldman et al., 2015] or error rates [Hardt

et al., 2016]. Another class of fairness definitions aims to blind algorithms to protected characteris-

tics, including through their proxies [Kilbertus et al., 2017, Wang et al., 2019, Coston et al., 2020,

Kusner et al., 2017, Nabi and Shpitser, 2018, Zhang and Bareinboim, 2018, Chiappa and Isaac,

2018, Wu et al., 2019, Nyarko et al., 2021, Nilforoshan et al., 2022].
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All the above approaches conceptualize the equity of algorithmic decisions in terms of universal

rules (e.g., error rate parity) rather than considering the consequences of decisions. Recent work

has noted limitations to this axiomatic approach, which has otherwise dominated the fair machine

learning literature [Cowgill and Tucker, 2019, 2020, Corbett-Davies et al., 2017, Kasy and Abebe,

2021, Grgić-Hlača et al., 2022]. Some recent exceptions have begun to consider algorithmic decision-

making from a consequentialist perspective [Liu et al., 2018, Viviano and Bradic, 2023, Fang et al.,

2022, Donahue and Kleinberg, 2020, Coston et al., 2020, Nilforoshan et al., 2022, Card and Smith,

2020, Barabas et al., 2018]. For example, Nilforoshan et al. [2022] show that common causal

definitions of algorithmic fairness lead to Pareto-dominated policies. However, although these

papers adopt a consequentialist approach to varying degrees, they do not consider the problem of

efficiently learning optimal policies, as we do here.

In a related thread of research on fair division problems, groups of individuals decide how to split a

limited set of resources among themselves [Bertsimas et al., 2011, Gal et al., 2017, Caragiannis et al.,

2012, Brams et al., 1996]. The broad aim of that work—to equitably allocate a limited resource—

is similar to our own, but it differs in three important respects. First, canonical fair division

problems seek to arbitrate between individuals with competing preferences (e.g., as in cake-cutting

style problems [Procaccia, 2013]), rather than adopting the preferences of a social planner, as we do.

Second, and relatedly, much of the fair division literature, like the algorithmic fairness literature,

takes an axiomatic approach to fairness, identifying allocations that have properties posited to

be desirable, such as envy-freeness [Cohler et al., 2011]. Although that perspective is useful in

many applications, it does not explicitly consider the preferences of policymakers, which may be

incompatible with these axiomatic constraints. Finally, work on fair division problems typically

does not try to learn causal effects of allocations on downstream outcomes from data, such as the

heterogeneous effect of transportation assistance on appearance rates.

In many real-world settings, decision makers have competing priorities, linking our work to the

large literature on learning to optimize in multi-objective environments [Zuluaga et al., 2013].

Such inherent trade-offs have recently been considered in the fair machine learning community

(e.g., Corbett-Davies et al. [2017], Cai et al. [2020], Rolf et al. [2020]); however, there has been little

work on creating equitable learning systems that account for competing objectives. Relatedly, a

large and growing body of work has shown that one can often efficiently elicit preferences for complex

objectives, even in high-dimensional outcome spaces [Lin et al., 2020, Fürnkranz and Hüllermeier,

2010, Chu and Ghahramani, 2005].

One particularly challenging aspect of our setting is handling budget constraints (e.g., we may

only be able to provide transportation assistance to a limited number of clients). Recent work has

proposed methods for learning decision policies with fairness or safety constraints through rein-

forcement learning [Thomas et al., 2019] and contextual bandit algorithms [Metevier et al., 2019],
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given access to a batch of prior data. That work, however, neither addresses learning with bud-

get constraints nor handles the exploration-exploitation trade-off required for online learning. A

related study [Patil et al., 2021] on online multi-armed bandits considered minimizing regret while

ensuring that each arm is played a minimal number of times, but did not consider context-specific

decision policies and fairness in resource allocations or budget constraints, as we do here. Budget

constraints have been considered in a more general form of knapsack constraints in bandit set-

tings. Slivkins [2019, Ch. 10] provides a review of such work, focusing on the primary literature,

which has considered the (non-contextual) multi-armed bandit setting. Earlier work on contextual

multi-armed bandits with knapsacks [Badanidiyuru et al., 2014, Agrawal et al., 2016b] provided

regret bounds but lacked computationally efficient implementations. Agrawal et al. [2016a] later

proved regret guarantees for linear contextual bandit with knapsacks. Wu et al. [2015] provide a

computationally tractable, approximate linear programming method for online learning for contex-

tual bandits with budget constraints. They do not consider multi-objective optimization, and their

analysis and experiments do not address continuous or large state spaces, which make their work

less applicable for equitable decision making in many settings of interest.

3 Selecting Policies in the Presence of Trade-Offs

We begin, in Section 3.1, by describing our motivating example of providing transportation to

individuals with mandatory court dates. Using client data from the Santa Clara County Public

Defender Office, we show that allocating benefits to maximize appearance rates induces spending

disparities across race groups. Then, in Section 3.2, we continue by explicitly illustrating the

inherent tension between maximizing appearance rates and equalizing spending—and arguing that

popular axiomatic approaches to fairness can lead to unintended harms. Finally, in Section 3.3, we

describe the results of a survey aimed at eliciting people’s willingness to trade court appearances

for lower spending disparities.

3.1 Motivating Example

Consider the problem of allocating rideshare assistance to individuals who are required to attend

mandatory court dates. The consequences of missing a court date can be severe. Often, after an

individual misses a court appearance, judges will issue a “bench warrant”, which can lead to the

individual’s arrest at their next contact with law enforcement, and possibly weeks or months of

jail time [Fishbane et al., 2020, Chohlas-Wood et al., 2023b]. Despite these consequences, some

individuals struggle to attend court because of significant transportation barriers [Mahoney et al.,

2001, Brough et al., 2022, Allen, 2023]. Government agencies—including public defender offices—
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may therefore aim to improve appearance rates by offering transportation assistance to and from

court for a subset of these individuals with the greatest transportation needs. This type of inter-

vention has promise for improving appearance rates by alleviating transportation burdens many

clients face, as has been demonstrated in medical settings [Chaiyachati et al., 2018, Vais et al.,

2020, Fraade-Blanar et al., 2021, Lyft, 2020]. As we discuss in Section 7, it is important to note

that there are many alternative policy approaches to this issue, including discouraging judicial use

of incarceration after an individual misses court.

A natural algorithmic approach for allocating rides is to prioritize those with the largest estimated

treatment effect per dollar. In particular, suppose we have access to a rich set of covariates, Xi,

for each individual i, such as their age, alleged offense, and history of appearance. Based on these

covariates, we could then estimate each individual’s likelihood of appearance in the absence of

assistance, Ŷi(0), and their likelihood of appearance if provided with a ride, Ŷi(1). These proba-

bilities might, for example, be estimated using historical data on past outcomes, or a randomized

experiment. Finally, we could sort individuals by ρi = [Ŷi(1) − Ŷi(0)]/ci, where ci is the cost of

providing a ride to the i-th individual, and offer assistance to those with the highest values of ρi

until the budget is exhausted.

This strategy aims to achieve the highest appearance rate given the available budget. However,

in so doing, it implicitly prioritizes those who live closest to the courthouse—for whom rides are

typically less expensive—which could lead to unintended consequences. For example, consider the

Santa Clara County Public Defender Office (SCCPDO) in California, which represents tens of

thousands of indigent clients every year. Like many American jurisdictions, Santa Clara County,

which includes San Jose, is geographically segregated by race (Figure 1(a)). In particular, Santa

Clara’s Vietnamese population, one of the county’s largest ethnic minorities, does not tend to live

as close to the courthouse as other racial or ethnic groups, including white individuals.

To understand the impacts of a strategy that optimizes exclusively for appearance, we start with a

dataset of 65,193 court dates handled by SCCPDO between January 1, 2017 and December 4, 2023.

For the sake of consistency, this population of court dates consists solely of clients’ first court date

after arraignment. For clients with court dates after January 1, 2021, we use the historical data

from 2017–2020 to model Yi(0) with a logistic regression model based on age, race/ethnicity, offense

severity (misdemeanor or felony), two-year appearance history, the day of the week and month of

the court appearance, and the distance from the client’s home to the courthouse. For simplicity, we

assume Yi(1) = 1, meaning that all individuals who receive a ride attend court. Finally, we assume

rides cost $5 per mile in each direction, in line with current rideshare prices.

Under the naive optimization approach outlined above, Figure 1(b) shows per-capita spending for

white and Vietnamese clients across different overall transportation budgets. For example, given

an annual budget of $50,000, a policy that allocates rides to those with the highest estimated

6



★☆

Asian

Hispanic

Black

White

(a) Santa Clara client locations. Each dot has been randomly
perturbed to preserve privacy.

$0

$5

$10

$15

$0 $5 $10 $15
Average spending for White clients

A
ve

ra
ge

 s
pe

nd
in

g 
fo

r 
V

ie
tn

am
es

e 
cl

ie
nt

s

(b) Average per-person spending for Vietnamese and white
clients in the absence of parity constraints.

Figure 1: The map in (a) shows the geographic distribution of the client base of the Santa Clara County Public
Defender Office. The star on the map marks the location of the main county courthouse, where most clients are
required to appear for court appointments. The plot in (b) explores the consequence of following a policy that
provides rides to those with the highest estimated treatment effect per dollar without parity constraints. This policy
would result in higher average per-person spending for white individuals than for Vietnamese individuals. The red
point shows that a hypothetical annual ride budget of $50,000 would result in an average per-person spending amount
of $6.86 for white individuals and an average per-person spending amount of $4.54 for Vietnamese individuals.

treatment effect per dollar would end up spending, on average, $6.86 for every white client, but

only $4.54 on average per Vietnamese client. Policymakers and other stakeholders may deem this

disparity to be undesirable, and may thus be willing to accept lower overall appearance rates in

return for more equal spending across groups.

3.2 Exploring Inherent Trade-offs

To further explore the tradeoff between appearance rates and spending parity, we now consider a

synthetic client population with 5,000 Black and 5,000 white clients. For simplicity, we assume

that each client has a 75% chance of appearing at court in the absence of rideshare assistance,

and is guaranteed to appear if provided a ride. Further, we set a fixed annual budget of $5
per person, or $50,000 total. Finally, we assume that Black clients live farther from court on

average. Consequently, the average expected treatment effect per dollar is lower for Black clients

than for white clients. This pattern induces a tension between maximizing total appearances

and equalizing spending across the two groups.1 We describe the data-generating process for this

1Optimizing for parity across protected demographic groups, including race groups, is legally impermissible in
some contexts in the U.S., as we discuss more in Section 7.
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Figure 2: The Pareto frontier for a stylized population model, showing the trade-off between appearances and
spending per Black client. The vertical axis shows expected additional appearances relative to a policy that does not
provide rideshare assistance to any clients. Under this model, common heuristics (e.g. maximizing appearances, and
demanding demographic or error-rate parity) lead to sub-optimal policies.

synthetic population in detail in Appendix C.

In Figure 2, we trace out the Pareto frontier for this example, which shows how the maximum

possible number of appearances (on the vertical axis) varies under different allocations of rideshare

assistance to Black clients (on the horizontal axis). Each point on the frontier corresponds to a

threshold policy that provides assistance to clients with the largest treatment effects in each group,

subject to demographic and budget constraints.

Along the Pareto frontier, a policymaker ostensibly has more and less preferred outcomes. For

example, imagine that a given policymaker’s utility is maximized at the blue point on the curve.

In contrast, the point at the crest of the curve (in green) achieves the highest number of overall

appearances, but is a suboptimal policy because it underspends on Black clients, at least according

to the stakeholder’s preferences. Similarly, a policy that achieves perfect spending parity (i.e., the

purple point) also yields suboptimal outcomes relative to the policymaker’s preferences, because

too many appearances are lost in order to achieve spending parity. We also plot the point on the

curve corresponding to equal false negative rates (FNR) between groups (in pink).2 A constraint

that demands error-rate parity—as opposed to maximizing utility more directly—can again result

in a sub-optimal balance between maximizing appearances and evenly distributing transportation

assistance, relative to the underlying preferences of the policymaker. In contrast to the axiomatic

2In this case, equal FNR means that Pr(π = 0 | Y (0) = 0, Y (1) = 1, G = g) = Pr(π = 0 | Y (0) = 0, Y (1) = 1).
That is, among those who would benefit from the assistance, an equal proportion do not receive it in both groups.
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(a) Graphic shown to survey participants.
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(b) Survey results from 297 respondents, split by self-identified U.S. political party affiliation. Mean preferred allocations are
represented by the vertical dashed line.

Figure 3: The graphic in (a) was shown to survey participants to help them select their preferred ride allocation
policy. In this hypothetical scenario, option B maximizes appearances, while option C corresponds to spending
parity. The survey results in (b) show that both Democrats and Republicans prefer policies that spend roughly equal
amounts on Black and white clients, but there is a wide range of preferences among members of both groups.

approach common to past work, this simple example helps illustrate the value of viewing decisions

from a consequentialist perspective.

3.3 Eliciting Preferences

We now empirically examine preferences for allocating transportation assistance in our hypothetical

scenario above. To do so, we designed and administered a poll to a diverse sample of 297 Americans.

We ran our survey on the Prolific platform, selecting the platform’s “U.S. representative sample”

option to recruit respondents, where respondents’ self-identified sex, age, and ethnicity is compara-

ble to a random population of U.S. adults, as determined by the U.S. Census. Survey respondents
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learned about our running example of providing clients with free rides to court, and then read a

short description of the hypothetical jurisdiction described above. (This prompt is included in full

in Appendix D.) We then asked respondents to select their preferred tradeoff among five possible

options drawn from the Pareto frontier in Figure 2. To aid in their decision, participants were

shown the graphic depicted in Figure 3(a). Participants were randomly shown either an ascending

or descending version of this graphic to mitigate anchoring to the first options shown.

Our survey results are presented in Figure 3(b), and illustrate two key points. First, the vast ma-

jority of respondents prefer trading at least some “efficiency” (i.e., as measured by total number of

people who avoid jail due to receiving transportation assistance) in order to spend more money on

Black clients. This broad preference for incorporating equity considerations into algorithmic deci-

sion making mirrors past results [Koenecke et al., 2023]. Second, there is substantial heterogeneity

in preferences that elides traditional group boundaries. For example, there is considerable varia-

tion in preferences within self-identified Democrats and Republicans; at the same time, the average

preference is comparable across these two groups. We observe similar patterns across a number of

other demographic characteristics of the respondents, including gender and race/ethnicity, as we

show in Appendix D. These results suggest that traditional axiomatic approaches to algorithmic

fairness—which do not consider the specific context of decisions—risk yielding policies that do not

reflect the preferences of stakeholders. In contrast, a more consequentialist perspective allows us

to develop algorithms that better balance the difficult trade-offs inherent to many policy problems.

4 Computing Equitable Policies

For the rideshare example in the previous section, it is computationally straightforward to trace out

the Pareto frontier: for any fixed budget allocated to each group, one can maximize appearances

by offering rides to those clients with the largest (estimated) gain in appearance rate per dollar,

while constraining spending to the allotted per-group budget. (We formally show the optimality of

this strategy in Appendix B.) As a result, given preferences over various outcomes (e.g., trading off

appearances with spending parity), one can efficiently determine the utility-maximizing allocation

strategy. However, in more complicated scenarios—with more complex preferences and potential

actions—it is not immediately clear how to find optimal allocation strategies, even when preferences

and treatment effects are fully known. Fortunately, for a large class of preferences, it is indeed

feasible to efficiently compute utility-maximizing policies, as we now describe. In Section 6, we

consider the problem of learning optimal polices when preferences are known but treatment effects

are not.

To generalize from our running example, consider a sequential decision-making setting where, at

each time step, one first observes a vector of covariates Xi drawn from a distribution DX supported
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on a finite state space X , and then must select one of K actions from the set A = {a1, . . . , aK}. For
example, in our motivating application, Xi might encode an individual’s demographics, history of

appearance, alleged charges, and distance from court, and the set of actions might specify whether

or not rideshare assistance is offered (in which case, K = 2). In general, we allow randomized

decision policies π, where the action π(x) is (independently) drawn from a specified distribution on

A.

In practice, there are often constraints on the distribution of actions taken. For example, budget

limitations might mean that only a certain amount of money can be spent on average per client,

with varying known costs per context and action c(x, ak). As such, given a cap b for average

per-person expenditures, we require our decision policy π to satisfy

EX [c(X,π(X))] =
∑
x,k

Pr(X = x) · Pr(π(x) = ak) · c(x, ak)

≤ b.

In many common scenarios, we might imagine a setup where one “control” action a0 has no cost

(i.e., c(x, a0) = 0), while all other available actions are costly (i.e., c(x, ak) > 0 for k > 0).

To arbitrate between feasible policies (i.e., those that adhere to the budget constraint), policymakers

might consider both the direct outcomes of a policy (e.g., on appearance rates) and the relative

allocation of benefits across demographic groups. To formalize this idea, we suppose each action

is associated with a potential outcome Yi(ak), and, in particular, taking action π(Xi) results in

the (random) outcome Yi(π(Xi)). For example, Yi(1) may indicate whether the i-th individual

would attend their court date if offered rideshare assistance, and Yi(0) may indicate the outcome

if assistance were not provided.

Now, to facilitate computation, we assume a policymaker’s utility U(π) of any decision policy π

can be approximated by a flexible function of the following form:

U(π) = EX,Y [r(X,π(X), Y (π(X)))]

−
L∑

ℓ=1

∑
g∈G

λg,ℓ

∣∣∣EX,Y [fℓ(X,π(X), Y (π(X))) | g ∈ s(X)]− EX,Y [fℓ(X,π(X), Y (π(X)))]
∣∣∣, (1)

where r and fℓ are fixed functions that parameterize this class of utilities, |·| is an absolute value,

λg,ℓ are non-negative constant parameters, and s(Xi) ⊆ G is a set of associated identities for each

individual, where G is a finite set. In discussions of algorithmic fairness, special attention is often

paid to these groups, which may consist of legally protected characteristics. For example, s(Xi)
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might specify both an individual’s race and gender.

The first term in U(π) captures the social value directly associated with each decision, and the

second term penalizes differences in allocations and outcomes across groups. For example, in our

motivating application, we might set

r(x, a, y) = (a+ c1y) · (1 + c2 · Ifrequent(x)) , (2)

where a ∈ {0, 1} indicates whether rideshare assistance is provided, y ∈ {0, 1} indicates whether a

client appeared at their court date, Ifrequent(x) indicates whether an individual is in frequent contact

with law enforcement, and the positive constants c1 and c2 characterize the relative values of the

terms. (In Eq. (2), we do not multiply a by a constant, since the overall scale of r is arbitrary.)

This choice of r encodes the (hypothetical) policymaker’s belief that: (1) appearing at one’s court

date is better than not appearing; (2) receiving rideshare assistance is better than not receiving it,

regardless of the outcome; and (3) the value of both assistance and appearance is greater for those

who frequently encounter law enforcement (i.e., those for whom an open bench warrant is more

likely to result in jail time because they are more likely to encounter law enforcement).

In addition to preferring transportation assistance policies that boost appearance rates, a policy-

maker might also prefer those for which we spend similar amounts per person across demographic

groups, to ensure such investments are broadly applied across an agency’s jurisdiction. The second

term of U(π) can be used to encode these parity preferences. For example, setting f(x, a, y) = c(x, a)

would encode a preference for spending parity. Depending on the application, one could imagine

similarly penalizing a given policy if the distribution of actions or successes were unequal across

groups.

In practice, to encode preferences in this way, one might first show stakeholders anticipated out-

comes of various hypothetical policies, akin to our survey above. We could then sweep over parame-

ters to produce a utility function of the appropriate form that accurately captures the elicited pref-

erences. Importantly, and in contrast with an axiomatic approach, our consequentialist paradigm

is predicated on the belief that there are not universal, context-independent constraints on policies.

Rather, the utility of a policy depends critically on how much one objective must be sacrificed to

achieve another.

Given this setup, our goal is to find a policy π∗ that maximizes utility while staying within budget.

Formally, we seek to solve the following optimization problem:

π∗ ∈ argmax
π

U(π)

subject to: EX [c(X,π(X))] ≤ b.
(3)
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We next discuss how to efficiently solve this optimization problem.

4.1 Computing Optimal Decision Policies

To compute optimal policies, we assume, in this section, that one knows the distribution of X and

the conditional distribution of the potential outcomes Y (ak) givenX—i.e., D(X) and D(Y (ak) | X).

(In Section 6, we consider how to learn optimal policies when historical data on treatment effects

are not known.) Given this information, we show the optimization problem in Eq. (3) can be

expressed as a linear program (LP), yielding an efficient method for computing an optimal decision

policy.

To construct the LP, first observe that any policy π corresponds to a matrix v ∈ RX
+ × RK

+ , where

vx,k denotes the probability x is assigned to action k. Thus, the complete space of policies Π can

be written as:

Π =

{
v ∈ RX

+ × RK
+

∣∣∣∣∣∀x ∈ X ,

K∑
k=1

vx,k = 1

}
,

and we can accordingly view the components vx,k of v as decision variables in our LP. Now, in this

representation, the budget constraint EX [c(X,π(X))] ≤ b in Eq. (3) can be expressed as a linear

inequality on the decision variables:∑
x,k

Pr(X = x) · vx,k · c(x, ak) ≤ b.

Finally, we need to express the utility U(x) in linear form. First, note that:

U(π) =
∑
x,k

EY [r(x, ak, Y (ak)) | X = x] · Pr(X = x) · vx,k

−
∑
ℓ

∑
g

λg,ℓ

∣∣∣∣∣∑
x,k

(
I(g ∈ s(x)) Pr(X = x)

Pr(g ∈ s(X))
· EY [fℓ(x, ak, Y (ak)) | X = x]

− Pr(X = x) · EY [fℓ(x, ak, Y (ak)) | X = x]

)
vx,k

∣∣∣∣∣.
Due to the absolute value, the expression above is not linear in the decision variables. But we can

use a standard construction to transform it into an expression that is. In general, suppose we aim

to maximize an objective function of the form

αT v −
∑
g,ℓ

λg,ℓ|βT
g,ℓv|, (4)

13



where α and β are constant vectors. We can rewrite this optimization problem as a linear program

that includes additional (slack) variables wg,ℓ:

Maximize: αT v −
∑
g,ℓ

λg,ℓwg,ℓ

Subject to: 0 ≤ wg,ℓ,

− wg,ℓ ≤ βT
g,ℓv ≤ wg,ℓ.

(5)

For completeness, we include a proof of this equivalence in Appendix A.

Putting together the pieces above, we now write our policy optimization problem in Eq. (3) as the

following linear program:

Maximize:∑
x,k

EY [r(x, ak, Y (ak)) | X = x] · Pr(X = x) · vx,k −
∑
g,ℓ

λg,ℓwg,ℓ

Subject to:

vx,k, wg,ℓ ≥ 0 ∀x, k, g, ℓ∑
k

vx,k = 1 ∀x,∑
x,k

Pr(X = x) · vx,k · c(x, ak) ≤ b, and

− wg,ℓ ≤
∑
x,k

(
I(g ∈ s(x)) Pr(X = x)

Pr(g ∈ s(X))
· EY [fℓ(x, ak, Y (ak)) | X = x])

− Pr(X = x) · EY [fℓ(x, ak, Y (ak)) | X = x]

)
vx,k ≤ wg,ℓ ∀g, ℓ.

Our approach above is a computationally efficient method for finding optimal decision polices. In

theory, linear programming is (weakly) polynomial in the size of the input: O(|X |K + |G|L) vari-
ables and constraints in our case. In practice, using open-source software running on conventional

hardware, we find it takes approximately 1–2 seconds to solve random instances of the problem on

a state space of size |X | = 1, 000 with |G| = 10 groups, K = 5 treatment arms, and L = 1 parity

penalities.3

3We used the Glop linear optimization solver, as implemented in Google OR-Tools (https://developers.google.
com/optimization/).
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5 Sample Complexity Bounds on Learning Optimal Policies

To solve our policy optimization problem, we have thus far assumed perfect knowledge of the

distribution of potential outcomes D(Y (ak) | X), which allows us to compute the necessary inputs

for our linear program. In reality, however, this distribution must typically be learned from observed

data. One common approach for estimating the impact of actions is to run an experiment in which

actions are randomly allocated, potentially in a way to ensure that all actions are taken an equal

number of times, or to ensure each group of interest experiences all actions evenly. Note that

such data collection strategies do not adapt in response to observed outcomes of actions (such as

some actions yielding higher appearance rates partway through data collection). In Section 5.1, we

formally analyze these non-outcome-adaptive data collection strategies, and provide an upper bound

on the number of samples necessary to ensure we can compute a near-optimal allocation strategy

for our desired objective. In Section 5.2, we discuss some considerations relating to experimental

cost. We present this initial analysis to highlight how in some cases, the amount of data needed may

not differ substantially from simpler objectives that do not involve parity constraints. The other

benefit of this first analysis is that it involves creating an experimental design for data collection in

advance, which makes the resulting data easily suitable for standard statistical inference. However,

in practice there can be significant benefits to changing the data gathering strategy over the course

of an experiment, as more effective actions can be prioritized faster. In Section 6 we demonstrate

this through an alternative, contextual-bandit-based data collection strategy that can often learn

optimal policies more efficiently by judiciously exploring the effects of actions. We demonstrate the

advantages of this alternative strategy in an empirically grounded simulation study.

5.1 Sample Complexity Bounds

A natural concern for practitioners is whether balancing multiple complicated objectives—like the

competing outcomes highlighted in our utility function in Eq. (1)—requires obtaining substantially

more data than in traditional, single-objective settings. Further, in most domains of practical in-

terest, individuals are described by a set of features, and it is beneficial to know how choices about

representing these individuals impact the amount of data required. To address these considerations,

we provide upper bounds on the samples needed to construct near-optimal policies with high prob-

ability, focusing on spending parity by setting f(x, a, y) = c(x, a) (following our running example).

Our aim in this analysis is not to provide tight sample complexity bounds, but rather to examine

at a high level how additional parity objectives and modeling choices affect the amount of data re-

quired. Our results suggest that one may not need much more data to learn a multi-objective policy

that incorporates equity preferences compared with a single-objective reward-maximizing policy,

and that known structure on the data generating process can substantially reduce the amount of

15



data required.

Our work is related to a deep literature in multi-armed bandits and contextual multi-armed bandits

(see Lattimore and Szepesvári [2020] for a fairly recent textbook overview). The majority of this

research has focused on providing cumulative regret guarantees of online, adaptive algorithms for a

wide range of settings, including seminal results for finite armed bandits [Auer et al., 2002] and linear

contextual bandits [Abbasi-Yadkori et al., 2011], as well as more recent interest in logistic models

(e.g. Li et al. [2017], Jun et al. [2021]). Approaches that minimize cumulative regret bounds can be

different from algorithms that provide sample complexity bounds that are probably approximately

correct (PAC)—i.e., methods that after a sufficient amount of data, output a decision policy that

is near optimal with high probability.

Interestingly, prior work (e.g., Jin et al. [2018], Section 3.1) has provided an online-to-batch re-

duction that can be used to convert a contextual multi-armed bandit algorithm with a cumulative

regret result to a sample complexity bound on the number of samples needed to extract a near-

optimal policy with high probability. However, most contextual MAB algorithms with cumulative

regret guarantees rely on selecting actions under the principle of optimism under uncertainty with

respect to the immediate estimated reward for the current context. The resulting regret bound is

defined with respect to the best action that could have been selected. In contrast, in our setting the

objective is to compute a policy π that maximizes the utility function U(π) which includes both a

reward maximization term and a spending parity term. In general, the optimal policy in our setting

will not match an optimal policy that maximizes only the reward. This implies we cannot directly

leverage an online-to-batch reduction from existing algorithms with cumulative regret bounds, since

the regret bounds provided by those algorithms will not provide regret bounds for our setting. To

our knowledge, none of the existing online contextual bandit algorithms consider additional parity

objectives, or a joint policy across contexts, as in our work.

There is fairly limited work on MAB and contextual MAB algorithms that directly provide PAC

guarantees. Mannor and Tsitsiklis [2004]’s foundational work provided sample complexity bounds

for multi-armed bandits with a finite set of arms, and we will build on their work for providing

sample complexity bounds for our setting given a finite set of contexts and arms/actions, also

known as the tabular setting. Concurrent to the development of this work, there has been some

recent interest in sample complexity bounds for contextual bandits (e.g., Zanette et al. [2021],

Pacchiano et al. [2023], Li et al. [2022]) which we will discuss further under different assumptions

of the underlying data generating process.

We now introduce some additional assumptions. As in Sections 4 and 4.1, we further assume

throughout this section that the state space X is finite, and that the costs and the distribution

of X are known. In practice, information on the distribution of X can often be estimated from

historical data, before any interventions are attempted. Let π∗ be an optimal policy solution, as
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defined in Eq. (3), with corresponding utility U(π∗). We define the estimated utility function Û(π)

for a particular decision policy as

Û(π) = EX,Y [r̂(X,π(X), Y (π(X)))]

−
∑
g∈G

λg |EX [c(X,π(X)) | g ∈ s(X)]− EX [c(X,π(X))]| , (6)

where r̂ is the estimated reward function learned from data. Let π̂ be a solution to the opti-

mization problem in Eq. (3), where we maximize Û(π) instead of U(π). Further, let r(x, k) =

r(x, ak, YX=x(ak)) be the (random) reward if action ak is taken in the context x, where YX=x(ak)

is the (random) potential outcome conditional on the given context. Note that the randomness in

r(x, k) stems entirely from the randomness in the potential outcomes YX=x(ak).

First we present a simple lemma that allows us to bound the utility error by the reward estimation

errors which we will use for the proofs of the theorems.

Lemma 1. The loss of utility due to using π̂ = argmaxπ Û(π) is bounded by

U(π∗)− U(π̂) ≤ 2
∑
x

pxmax
k

|rxk − r̂xk| (7)

Proof. Proof. Both π̂ and π∗ by definition satisfy any provided constraints. Then

U(π∗)− U(π̂) = U(π∗)− Û(π̂) + Û(π̂)− U(π̂) (8)

≤ U(π∗)− Û(π∗) + Û(π̂)− U(π̂). (9)

where the second equation follows because π̂ = argmaxpi Û(π), and so Ûπ∗ ≤ Û π̂.

Since the parity part of the utility function depends only on the policy, and not the rewards, it

cancels out in Equation 8, leaving

U(π∗)− Û(π∗) + Û(π̂)− U(π̂) =
∑
x

px
∑
k

π∗
xk(rxk − r̂xk) +

∑
x

px
∑
k

π̂xk(r̂xk − rxk) (10)

≤ 2
∑
x

pxmax
k

|rxk − r̂xk| (11)

We now present upper bounds on the sample size needed to learn near-optimal policies. Specifically,

for fixed ϵ, δ > 0, we provide sample bounds which ensure the utility gap U(π∗) − U(π̂) is small

with high probability, i.e., P(U(π∗) − U(π̂) < ϵ) > 1 − δ. We prove these bounds under three
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different common distributional assumptions on the reward model: tabular, linear and logistic

reward models:

1. (Tabular Rewards) We assume r(x, k)
d
= f(x, k) + η, where η ∼ σ2-subGaussian and η is

independent across draws of the reward function.

2. (Linear Rewards) We assume there are (known) features ϕ(x, ak) ∈ Rd of the state and action,

and (unknown) parameters θ∗ ∈ Rd such that r(x, k)
d
= ϕ(x, ak)

T θ∗ + η, where η ∼ σ2-

subGaussian and η is independent across draws of the reward function.

3. (Logistic Rewards) We assume there are (known) features ϕ(x, ak) ∈ Rd of the state and

action, and (unknown) parameters θ∗ ∈ Rd such that P(r(x, k) = 1) = logit−1(ϕ(x, ak)
T θ∗),

where the reward is independent across draws.

Full proofs for this section are in Appendix E.

Theorem 1 (Tabular Rewards). Assume the reward is tabular. Assume n samples are collected in

a round-robin fashion (i.e., for each context x, select the least-sampled action ak in that context,

breaking ties arbitrarily). Further assume that the data are used, per (x, a) pair, to estimate a max-

imum likelihood reward model r̂(x, a) that is used to define Û (see Equation 6) and π̂ = argmax Û .

Then for ϵ > 0, δ > 0, λg ≥ 0, if

n ≥ 16σ2 |X||A|
ϵ2

ln
4|X||A|

δ
ln

2|X|
δ

,

then P(U(π∗)− U(π̂) < ϵ) > 1− δ.

Standard proofs for tabular multi-armed bandits rely on concentration inequalities on the estimated

reward functions [Mannor and Tsitsiklis, 2004]. Unlike this work, we additionally need to estimate

the reward per context to ensure the final estimated utility, which is a weighted sum over contexts,

is near accurate. We show it suffices to estimate the reward outcome for a particular (x, a) pair to

differing levels of accuracy, based on the probability of the context x, which allows our final bounds

to be independent of the minimum context probability. This result is identical to finding a policy

such that
∑

x p(x)r(x, pi(x)) is ϵ-close to optimal. Note that this sample bound is identical whether

or not we consider spending parity (i.e., regardless of whether λg > 0 for some g or λg = 0 for all

g in Eq. (1)). Intuitively, this is the case because the sample complexity is driven by uncertainty

in estimating the rewards. The parity component itself depends only on the allocation across

subgroups, which can be computed exactly given any policy, independent of the estimated rewards.

Our sample bound in the tabular setting scales linearly with the product of the size of the context

space and the action space, which suggests that prohibitively large sample sizes may be needed
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in practice. When the contexts are independent, this dependence is unavoidable, as a sample

complexity lower bound shows at least |A|
ϵ2

samples are required for a single context [Mannor and

Tsitsiklis, 2004]. Our next theorem proves significantly fewer samples are sufficient if the reward

function is a linear model.

Theorem 2 (Linear Rewards). Assume the reward is linear with feature representation ϕ(x, ak) ∈
Rd. For any non-adaptive strategy π used to collect samples, let

Σ(π) = E[ϕ(X,π(X))ϕ(X,π(X))T ] =
∑
x,k

P(X = x) · P(π(x) = ak) · ϕ(x, ak)ϕ(x, ak)T

be the expected induced covariance matrix. Also define a problem-dependent constant

ρ0(π) = max
x,k

∥Σ(π)−1/2ϕ(x, ak)∥/
√
d.

There exists a static (it does not update as data is gathered) data collection strategy π̃ such that,

for any ϵ > 0, δ > 0, λg ≥ 0 and

n ≥ max{6ρ0(π̃)2d log(3d/δ), O
(
σ2d2/ϵ2

)
},

with cost incurred c ≤ nmaxxk c(x, ak), we have P(U(π∗)− U(π̂) < ϵ) > 1− δ.

The quantity ρ0 in the above bound is known as ‘statistical leverage’ [Hsu et al., 2014]. If no prior

information is available, we know only that ρ0 ≤ ∥ϕ∥2/
√

λmin(Σ). In the worst case, ρ0 may scale

with the condition number of the covariance matrix. However, in many practical settings ρ0 is not

large compared to 1/ϵ2, and so the upper bound scales like σ2d2/ϵ2. π̃ refers to the data collection

strategy in Theorem 2, and π̂ refers to the performance of a learned decision policy that maximizes

the utility given the gathered data.

The above result was motivated in part by, as we noted earlier, that in general we cannot directly

leverage cumulative regret bounds for contextual bandits since the bounds relate empirical decisions

to the optimal decision for the current context, with no further constraints or objectives. How-

ever, concurrent research by Zanette et al. [2021] on contextual linear bandits, provides a sample

complexity result sufficient to upper bound the expected reward error,∫
x
pxmax

k
|ϕ(x, ak)T (θ∗ − θ̂)|. (12)

From our Lemma 1, we can use this to directly bound our expected utility. Therefore we could also

use their data collection strategy and bound and obtain a O(d
2

ϵ2
) sample complexity result, which

does not depend on ρ0(π). Their sample complexity results is minimax (in the dominant term, up

to constants and log terms) optimal for linear contextual bandits (for both static data collection
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strategies that do not update based on the observed rewards, and for adaptive ones that do update

as rewards are observed). This implies that using their algorithm also yields a minimax (in the

dominant term, up to constants and log terms) optimal sample complexity result for our setting,

since crucially, the parity objective depends only on the policy.

Given the practical importance of binary rewards, bounds for this setting would also be beneficial.

However, while there has been some recent attention to logistic bandits [Li et al., 2017, Dong

et al., 2019, Jun et al., 2021], these papers have focused on cumulative regret guarantees. Jun

et al. [2021] provide some PAC bounds on returning the optimal arm for logistic bandits. We

are not aware of sample complexity results for contextual logistic bandits. In Appendix E we

provide some preliminary bounds on the suboptimality of the performance of the resource allocation

strategy derived from using estimated plug-in parameters for the logistic reward model (Theorem 6).

Our results require strong assumptions, and depend on problem-specific properties and the data

collection strategy, suggesting there is significant room for similar results under more relaxed, and

constructive, conditions. Contextual multi-armed bandits are an active research area in the machine

learning community, and it is likely our results can benefit from future results on sample complexity

algorithms and bounds for contextual bandits.

5.2 Cost-Aware Sample Complexity

While we have provided sufficient sample bounds, it is also useful to consider bounds on the

experimental cost sufficient to learn a near-optimal policy. Note by this we mean a bound on

the cost required to learn a near-optimal policy, not the budget constraint on the learned decision

policy. In general the amount of resources available during the experimental period may be different

than the resources available during sustained deployment.

In the tabular case, we can prove that an experimental budget of O(
∑

x,k c(x, ak) log(1/δ)/ϵ
2) is suf-

ficient (see Corollary 1 in the Appendix). When the domain can be modeled with a linear or logistic

reward model, we can simply multiply our sample bounds by the maximum cost maxxk c(x, ak) to

get sufficient upper bounds on the experimental cost. In some settings these bounds are likely order

optimal in the dominant terms. For example, in the tabular case without parity preferences, when

costs are homogeneous across contexts and actions, and the context distribution is uniform, the

expected experimental cost must be at least c|X||A| log(1/δ)/ϵ2 in the worst case (Theorem 7 in

the Appendix).

However, in general we expect that there are alternate strategies, with tighter bounds, that are

cost-aware. As an illustration, consider a setting with two contexts, two actions, bounded rewards,

no parity preferences (λg = 0), and a budget b (for the final learned decision policy) that is very

large. As shown in Table 1, let costs be $1 for both actions in context 1, $0 for action 1 in context
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Costs

Probability Action 1 Action 2

Context 1 0.98 $1 $1
Context 2 0.02 $0 $500

Table 1: Setup for hypothetical cost-aware example.

2, and $500 for action 2 in context 2. Using a round-robin data collection strategy to obtain an

ϵ-optimal policy, which we analyzed previously, will take both actions, in both contexts, an equal

number of times. However, if the probability of context 2 is very small compared to context 1,

depending on the reward structure, it may be possible to learn a policy that yields a utility that is

ϵ-optimal by only learning the optimal action in context 1, and always taking action 1 in context

2 (the 0 cost action). Given the high cost of sampling action 2 in context 2, such an alternate

data gathering strategy might be preferable if it is important to optimize the cost incurred when

learning the decision policy.

Generally, we expect that a cost-aware data gathering strategy would depend on the interaction

between context probabilities, cost functions, and bounds on the potential outcome (reward) ranges.

This is an interesting direction for future work, and the technical innovations required will likely

further increase when we use parametric assumptions on the reward models, and when budget or

parity preferences (λg > 0) are in place.

6 Adaptively Learning Optimal Policies

The results from Section 5 suggest the feasibility of solving our desired optimization problem even

when the distribution of potential outcomes must be estimated from data. However, learning from

the type of non-adaptive strategies considered above is typically not the most efficient approach

to learning from data. For instance, in our running example of providing rideshare assistance to

public defender clients, if there turns out to be a group of clients with very small need and benefit

from assistance, a non-adaptive learning strategy will still allocate a proportional amount of limited

resources to such individuals. In contrast, contextual bandit algorithms are often designed to max-

imize expected utility while learning, which typically involves estimating the potential performance

of each action ak and using that information to accrue benefits.4

To more efficiently learn decision policies in the real world, we now outline our procedure to

4Non-adaptive strategies are particularly useful when testing statistical hypotheses post hoc, which is most easily
done with data that are independently and identically distributed across treatments. We note that there is con-
siderable interest in developing suitable inference methods for this latter goal using data gathered with adaptive,
multi-armed bandit strategies (e.g. Hadad et al. [2021], Zhang et al. [2021]).
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Algorithm 1 Policy learning procedure.

1: input: Actions ak, budget b, parity preferences λg,ℓ and fℓ, reward function r, covariate dis-
tribution P(X = x), group membership function s, bandit algorithm, ninit

2: initialize: Randomly treat first ninit people
3: for each subsequent individual i do
4: Set Di := {(Xj , Aj , Yj)}i−1

j=1, where Xj , Aj , and Yj denote the covariates, actions, and

outcomes for previously seen individuals
5: Estimate Dk,x(Y (ak) | X = x) with a parametric family g(x, a; θ) fit on Di

6: if ε-greedy then
7: Estimate EY [r(x, a, Y (ak)) | X = x] and EY [fℓ(x, a, Y (ak)) | X = x] using g(x, a; θ̂i), where

θ̂i is the MLE
8: else if Thompson sampling then
9: Estimate EY [r(x, a, Y (ak)) | X = x] and EY [fℓ(x, a, Y (ak)) | X = x] using g(x, a; θ̂∗i ), where

θ̂∗i is drawn from the posterior of θ̂i
10: else if UCB then
11: Estimate EY [r(x, a, Y (ak)) | X = x] using the α-percentile of the posterior of g(x, a; θ̂i)

and estimate EY [fℓ(x, a, Y (ak)) | X = x] using the (1 − α)-percentile of the posterior of
g(x, a; θ̂i)

12: end if
13: Compute nominal budgets b∗i according to Eq. (F.42)
14: Find solution π∗

i of the LP in Section 4.1 with b∗i and the input values estimated above
15: if ε-greedy & Bernoulli(ε) == 1 then
16: Take random action Ai according to Eq. (F.43)
17: else
18: Take action Ai ∼ π∗

i (Xi)
19: end if
20: Observe outcome Yi
21: end for

integrate the LP formulation from Section 4 with three common contextual bandit approaches: ε-

greedy, Thompson sampling, and upper confidence bound (UCB), as described in Algorithm 1. For

simplicity, we assume knowledge of the covariate distribution D(X), which is often easily obtained

from historical data, even in the absence of past interventions. If historical data are not available,

the covariate distribution can instead be estimated from the sample of individuals observed during

the decision-making process.

At a high level, at each step i, our ε-greedy approach first estimates D(Y (ak) | X) using the

maximum likelihood estimates of a chosen parametric family. We next use these estimates to find

the optimal policy π∗
i with our LP. Then, with probability 1 − ε, we treat the i-th individual

according to π∗
i ; otherwise, with probability ε, we take action ak with a probability set to meet our

budget requirements in expectation. Our Thompson sampling approach maintains a posterior over

the parameters of a model of the potential outcomes D(Y (ak) | X), samples from this posterior,

uses the posterior draw to construct the inputs for our LP, yielding a policy π∗
i , and then treats

the i-th individual according to π∗
i . Finally, under our UCB approach, we compute π∗

i by solving
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Figure 4: Mean regret, across 2,000 simulations, incurred by different learning approaches. We define regret here as
the difference between the observed utility and the utility obtained by an oracle during the same experiment. Values
are tightly estimated at each i, with the 95% confidence interval no more than 1.1 units off the estimate, so we omit
uncertainty bands for this figure. We note that the three bandit approaches—ε-greedy, Thompson sampling, and
UCB—incur substantially less regret than random assignment (RA). It is possible to reduce the regret incurred from
RA by stopping randomization early, and following the optimal estimated policy from that point forward. However,
these stop-early RA approaches produce worse policies than other approaches (Figure 5).

the LP with optimistic estimates of r and the parity penalities (e.g., using the 97.5th percentile of

the posterior of the former and the 2.5th percentile of the latter).

6.1 Simulation Study

To evaluate our learning approach above, we conducted a simulation study using data on a sample

of clients served by the Santa Clara County Public Defender Office. In this example, clients can

receive one of three mutually exclusive treatments ak: round-trip rideshare assistance, a transit

voucher, or no transportation assistance. We fix our budget to $50,000 and limit our population

to 1,000 clients, resulting in an average per-person budget of $5. In line with many government

pilot programs, we assume that this funding is dedicated to learning suitable policies, and that our

hypothetical public defender would be able to provision separate funding later to operate a more

permanent program. We set the cost of rides to $5 per mile. We limit the client population to white

and Vietnamese individuals to reflect our running example. The utility of a policy is described by

Eq. (1), where we set r(x, a, y) = y, f(x, a, y) = c(x, a), and λ = 0.0006. This choice yields an

oracle policy that balances between maximizing appearances and achieving parity in per-capita

spending across groups. The data generating process for this population and additional experiment

parameters are described in detail in Appendix F.
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Figure 5: Mean performance, across 2,000 simulations, of optimal policies estimated with data available at each
iteration i. Performance is defined as the additional utility obtained by a policy over a baseline of no treatment for
all individuals, with 100% indicating this quantity for the oracle policy. Uncertainty bands represent 95% intervals
around the mean. UCB and Thompson sampling generate policies that are better than random assignment (RA) at
any given iteration i. In contrast, the ε-greedy approach and the stop-early versions of RA generate policies that are
slower to (or may never) reach near-oracle performance.

We compare our contextual bandit approaches against several baselines. First, we compare to

non-adaptive random assignment (RA), in which treatment is randomly selected (in accordance

with the budget) throughout the entire learning phase. The simplicity and versatility of RA makes

it a common strategy for learning optimal policies. We also include partially adaptive variations

on this approach, where we run RA on the first n individuals, and then follow the optimal policy

estimated at individual n for the rest of the sample, similar to explore-first strategies. We compare

all approaches against an oracle that can observe the true appearance probabilities.

We repeat this evaluation 2,000 times each on 1,000 randomly selected individuals from our dataset,

and compare the performance of all approaches using two different metrics. Our main two bandit

approaches—Thompson sampling and UCB—significantly reduce regret when compared to non-

adaptive and partially adaptive approaches during the learning phase (Figure 4). Our bandit

approaches also learn policies that, if used for future populations, would outperform non-adaptive

and partially adaptive approaches (Figure 5). In contrast to our two main bandit algorithms, the

ε-greedy approach also manages to reduce regret, but is slower to learn a near-oracle policy. RA

and its variations illustrate the limits of the conventional randomized approach. For example, it is

possible to learn a near-oracle policy using classic RA, but this incurs substantial regret during the

learning phase. Though it is possible to reduce this regret by ending RA early, these alternatives

learn poorer-performing policies.
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Vietnamese spending disparity

With penalty No penalty
Method (λg = 0.004) (λg = 0)

UCB -$2.21 -$3.36
Thompson -$1.21 -$2.19
ϵ-Greedy -$1.29 -$2.38

Table 2: Mean spending disparities by method for Vietnamese clients across 2,000 experiments, including both
the main set of simulations (where λg = 0.004) and an alternative set of simulations (with identical parameters
to the main set, except where λg = 0). Disparities are calculated by comparing average spending on Vietnamese
individuals to the $5 average spending on all individuals (i.e., the target budget). Note that spending disparities are
approximately $1 larger when λg = 0, verifying that the bandit methods we employ in our simulation learn to reduce
spending disparities to maximize the policymaker’s utility.

By design, the bandit methods discussed above reduce spending disparities during the course of

the simulation. We demonstrate this by comparing our main simulation to an alternate set of

simulations where λg = 0 (Table 2). For example, with a choice of λg = 0.004, reflecting a mild

preference for more equal spending, we observe that UCB methods spent $2.21 less on Vietnamese

clients than the $5 population average (i.e., the target budget). In contrast, with a choice of λg = 0

(i.e., preferring policies that simply aim to maximize appearances), UCB methods spent $3.36 less

on Vietnamese clients compared to the population average.

The bandit approaches we discuss above aim to maximize utility during the learning phase, but

do not explicitly try to minimize money spent during learning. As discussed in Section 5.2, it

is possible that alternate approaches may spend less while achieving similar outcomes. One could

imagine a learning strategy in which nearly all participants were offered the no-cost treatment, with

only a small number offered a costly treatment (a ride or transit voucher). With these alternate

approaches, we may be able to learn the structure of appearance behavior by using the no-cost

treatment for most participants, and then learn the impact of costly treatments with a small number

of remaining participants. To explore such alternate approaches empirically, we considered a range

of policies that assign the first 1,000 clients in each experiment to one of our three treatment arms

in different random allocations. For example, one variation randomly allocated rides to only 2% of

clients, and transit vouchers to only 2% of clients, with the remaining 96% of clients receiving the

no-cost control action. Another variation randomly allocated rides for 10% of clients, and vouchers

for 40% of clients, with remaining 50% of clients receiving the no-cost control action. Additional

details describing this simulation are included at the end of Appendix F.

We show the results of this exercise in Figure 6. This plot compares three dimensions on which

we evaluate each policy: first, the utility achieved during the learning phase; second, the quality of

the policy learned by the end of the phase; and third, the total amount spent during learning. We

see that varying spending mostly affects the utility observed during learning, with more expensive
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Figure 6: The effect of varying spending on outcomes of interest. Each circle represents average outcomes across
125 simulations of random assignment (RA) with a given allocation. For the sake of comparison, we also included the
average outcome across 2,000 simulations of UCB from earlier in this section, represented here by a single triangle.
Each glyph is sized by total spending, with color indicating if these approaches spent less (blue), equivalent (red), or
more (green) money compared to the methods discussed earlier in this section. We find that varying spending mostly
affects the utility observed during the learning phase, but has little effect on the quality of the final policy learned.
Random assignment strategies that save money (when compared to UCB) do not achieve as much utility during the
leraning phase, though both approaches result in similar-quality policies.

allocations resulting in higher utility during learning. Spending appears to have little impact on the

quality of the final policy learned. For the sake of comparison, Figure 6 also includes UCB results

from the simulations at the beginning of this section. Among the spending variations we tested,

no variation spent less money than UCB while achieving similar utility during the learning phase.

This suggests that UCB can be a cost-effective approach to maximizing utility while learning a

high-quality policy.

7 Discussion

We have outlined a consequentialist framework for equitable algorithmic decision-making. Our

approach foregrounds the role of an expressive utility function that captures preferences for both

individual- and group-level outcomes. In this conceptualization, we explicitly consider the inher-

ent trade-offs between competing objectives in many real-world problems. For instance, in our

running example of allocating transportation assistance to public defender clients, there is tension

between maximizing appearance rates and equalizing spending across groups. Popular rule-based

approaches to algorithmic fairness—such as enforcing spending parity or equal false negative rates

across groups—implicitly balance these competing objectives in ways that may be at odds with
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the actual preferences of stakeholders. Our approach, in contrast, requires one to confront the

consequences of difficult trade-offs, and, in the process, may help one improve those decisions.

For a rich class of utility functions, we showed that one can efficiently learn optimal decision policies

by coupling ideas from the contextual bandit and optimization literatures. For example, with our

UCB-based algorithm, we do so by repeatedly solving a linear program under optimistic estimates

of the potential outcomes of actions. In an empirically grounded simulation study, we showed that

this strategy can outperform common alternatives, including learning through random assignment

or acting greedily based on the available information.

Our learning algorithm requires access to a well-specified utility function that reflects stakeholder

preferences. In practice, inferring this utility is a complex task in its own right, but the illustrative

survey that we conducted shows how one can begin to operationalize this task. Challenges may arise

from an unwillingness to explicitly state preferences for trade-offs involving sensitive considerations

like demographic parity. There are, however, several established techniques to elicit multi-faceted

preferences less directly. One family of approaches selects pairs of similar realistic scenarios, asks

stakeholders to pick their preferred outcome, and infers their preferences from these choices [Koe-

necke et al., 2023, Lin et al., 2020, Fürnkranz and Hüllermeier, 2010, Chu and Ghahramani, 2005,

Jung et al., 2019].

Another challenge—particularly relevant in the dynamic setting—is accounting for delayed out-

comes. In our running example, we may choose to offer rideshare assistance to a client days or

weeks before their appointment date. As a result, there may be large gaps between when an action

is taken and when we observe its outcome. Thompson sampling methods have been observed to

be more robust to delayed outcomes than upper confidence bound strategies in contextual bandit

scenarios [Chapelle and Li, 2011]. Another way to address this issue is through the use of proxies

or surrogates, in which intermediate outcomes are used as a temporary stand-in for the eventual

outcome of interest [Athey et al., 2019]. For example, with rideshare assistance to clients, one might

use intermediate responses (like a client’s confirmation to attend their appointment) as a proxy for

appearance. A third approach might be to reduce the budget for costly actions, effectively limiting

the resources spent while waiting to observe outcomes.

In addition to the above technical considerations, we note some practical limitations in providing

transportation to public defender clients with upcoming court dates. First, in many circumstances

policymakers may not be legally permitted to explicitly use race, ethnicity, or other protected

attributes when deciding how to allocate limited resources. These policymakers may instead focus

on other attributes, like geography or socioeconomic status, which may be legally or socially more

permissible. Second, our motivating example presupposes that resources are too limited to aid

the entire population of interest. If policymakers had enough funding available to assist an entire

population, it may not make sense to even consider equalizing per-capita spending across groups
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of interest, given that everyone would receive transportation assistance. Finally, though this study

emphasizes the potential benefits of rideshare assistance for those who have mandatory court dates

(e.g., one potential benefit is avoiding time in jail), a simpler and more effective policy for reducing

jail time may be to discourage judges from issuing bench warrants if clients fail to appear in court.

Though in isolation this policy might result in lower appearance rates, it could be accompanied by

other assistance to offset this adverse outcome, including text message reminders, social services, or

rideshare assistance as we describe here [Chohlas-Wood et al., 2023b, Fishbane et al., 2020, Zottola

et al., 2023].

Algorithms impact individuals both through the decisions they guide and the outcomes they en-

gender. Looking forward, we hope our work helps to elucidate the subtle interplay between actions

and consequences, and, in turn, furthers the design and deployment of equitable algorithms.
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Johannes Fürnkranz and Eyke Hüllermeier. Preference learning and ranking by pairwise compari-

son. In Preference learning, pages 65–82. Springer, 2010.

Ya’akov Gal, Moshe Mash, Ariel D Procaccia, and Yair Zick. Which is the fairest (rent division)

of them all? Journal of the ACM (JACM), 64(6):1–22, 2017.

Andrew Gelman and Yu-Sung Su. arm: Data Analysis Using Regression and Multilevel/Hierarchical

Models, 2020. URL https://CRAN.R-project.org/package=arm. R package version 1.11-1.

Sharad Goel, Ravi Shroff, Jennifer L Skeem, and Christopher Slobogin. The accuracy, equity, and

jurisprudence of criminal risk assessment. Equity, and Jurisprudence of Criminal Risk, 2018.

Steven N Goodman, Sharad Goel, and Mark R Cullen. Machine learning, health disparities, and

causal reasoning. Annals of Internal Medicine, 2018.
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Appendices

A Absolute Value in an LP Objective

If (v∗, w∗) is a solution to the LP in Eq. (5), then we claim v∗ is a solution to the original optimization

problem in Eq. (4). Let OPTabs and OPTLP denote the optima of Eqs. (4) and (5) above. Now,

since wg,ℓ = |βT
g,ℓv| satisfies the LP constraints, OPTabs ≤ OPTLP.

Conversely, because the LP objective function decreases in wg,ℓ, if β
T
g,ℓv

∗ ≥ 0, then w∗
g,ℓ = βT

g,ℓv
∗

(since βT
g,ℓv

∗ ≤ wg,ℓ, and the other two constraints are immediately satisfied in this case). On

the other hand, if βT
g,ℓv

∗ ≤ 0, then w∗
g,ℓ = −βT

g,ℓv
∗ (since βT

g,ℓv
∗ ≥ −wg,ℓ). Thus, in either case,

w∗
g,ℓ = |βT

g,ℓv
∗|, which implies that

OPTabs = OPTLP = αT v∗ −
∑
g,ℓ

λg,ℓ|βT
g,ℓv

∗|.

B Group-Specific Threshold Rules

The LP described in Section 4.1 yields a solution to our general decision-making problem, with

an arbitrary number of treatment arms and a potentially complex utility function. Here we show

that in the case of K = 2 treatments (e.g., with the options corresponding to whether or not one

provides rideshare assistance) and parity penalties only on cost, optimal decision policies can be

expressed in a simple, interpretable form. Moreover, for a reward function r that decomposes into

aggregate and individual components—as in Eq. (2)—we can view optimal policies as group-specific

threshold rules.

Theorem 3. In the setting of Section 4, suppose K = 2. Further assume that we only impose

parity penalties on the cost: f1(x, a, y) = c(x, a), where c(x, a0) = 0 and c(x, a1) > 0. Finally,

suppose |s(x)| = 1 (i.e., G partitions X ) and that ∆(x) > 0, where

∆(x) = EY [r(x, a1, Y (a1))− r(x, a0, Y (a0)) | X = x].

Then, for group-specific constants tg and pg, there exists an optimal decision policy π∗ of the form

Pr(π∗(x) = a1) =


1 ∆(x)/c(x, a1) > ts(x)

ps(x) ∆(x)/c(x, a1) = ts(x)

0 otherwise.

(B.1)
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X Pr(X = x) E[Y (0)|X = x] E[Y (1)|X = x] c(x, a1) ∆(x)/c(x, a1) E[Y (2)|X = x] c(x, a2) ∆(x)/c(x, a2)

x1 0.1 0.1 0.6 $10 0.05 0.3 $1 0.2
x2 0.9 0.1 0.2 $10 0.01 0.12 $1 0.02

Table B.1: Setup for counterexample.

Proof. Proof. We start by rewriting the utility U(π) as

U(π) =
∑
x

EY [r(x, a0, Y (a0)) | X = x] · Pr(X = x)

+
∑
x

∆(x) · Pr(π(x) = a1) · Pr(X = x)

−
∑
g∈G

λgδg(π),

where

δg(π) = |EX [c(X,π(X)) | g ∈ s(X)]− EX [c(X,π(X))]|.

Now, for any policy π, we construct a threshold policy π̃ of the form in Eq. (B.1) by assigning to

action a1 those x in each group g having the largest values of ∆(x)/c(x, a1) such that

EX [c(X, π̃(X)) | g ∈ s(X)] = EX [c(X,π(X)) | g ∈ s(X)].

By construction, δg(π̃) = δg(π), and∑
x

∆(x) Pr(π̃(x) = a1) Pr(X = x) ≥
∑
x

∆(x) Pr(π(x) = a1) Pr(X = x).

Consequently, U(π̃) ≥ U(π), establishing the result. □

In the theorem above, we assume K = 2, which yields a simple threshold solution for the optimal

policy. In general, with K > 2, the structure of the optimal policy can be more complicated.

As a counterexample to the above, suppose K = 3, with a no-cost baseline action a0, and two

costly actions, a1 and a2. We further imagine a population with a single group (i.e., |G| = 1)

with individuals in two contexts characterized by attributes x1 and x2, and a utility U(π) =

EX,Y [Y (π(X))]. Table B.1 lists the responsiveness of each type of individual to each of the three

possible actions, the costs of the two costly actions, and the relative benefit per dollar of the two

costly actions over the free baseline action. In this setup, we set b = $1, i.e., we can spend, on

average, one dollar per person.

For both types of individuals in this example, action a2 has the highest relative benefit per dollar

over the baseline action a0 (highlighted in Table B.1 in gray). As such, one intuitive strategy π is
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to treat every individual with a2, exhausting our budget, yielding

U(π) = (0.3 · 0.1) + (0.12 · 0.9) = 0.138.

However, in this case, a better strategy π∗ is to assign action a1 to all individuals of type x1, and

to assign a0 to all individuals of x2, exhausting our budget and yielding

U(π) = (0.6 · 0.1) + (0.1 · 0.9) = 0.15.

In this setup, even though a2 has the highest relative benefit per dollar, it is low cost in absolute

terms, meaning that we have to treat individuals of both types to exhaust our budget, including

individuals of type x2 who see little benefit to the treatment. As a result, it is better to exhaust

one’s budget on action a1 with individuals of type x1, which sees a higher return on average than

treating the entire population with a2. This type of scenario demonstrates the need for more

complicated solutions to identifying an optimal policy, justifying the use of a linear program (or

other similar approaches).

More generally, if we were to allow arbitrary utility functions, then finding an optimal decision

policy is NP-hard, as we show below.

Proposition 1. If we allow arbitrary utility functions U in Eq. (3), then finding an optimal policy

is NP-hard.

Proof. Proof. We reduce to the NP-hard subset sum problem. Given integers x1, . . . , xn, consider

the policy optimization problem forK = 2 actions and no budget constraints (i.e., c(x, ak) = b = 1),

with utility

U(π) =


1 A(π) ̸= ∅ ∧

∑
i∈A(π)

xi = 0

0 otherwise

where A(π) = {i : Pr(π(xi) = a1) = 1}. Then maxπ U(π) = 1 if and only if there exists a non-trivial

subset of the integers {x1, . . . , xn} that sums to zero, establishing the claim.

C Details for Section 3.2

For clients in our synthetic population, distance from court is determined by folded normal distri-

butions with density:

gµ,σ(x) =


2

σ
√
2π

exp
(
− (x−|µ|)2

2σ2

)
if x ≥ 0,

0 otherwise.
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White clients in this population have distances given by the following density:

fw(x) = gµ1,σ1(x),

where µ1 = 2 and σ1 = 1. For Black clients, distance from court is determined by a mixture

distribution with a density given by:

fb(x) = 0.25 · gµ2,σ2(x) + 0.75 · gµ3,σ3(x),

where µ2 = 1, σ2 = 1, µ3 = 10, and σ3 = 5.

D Details for Figure 3(b)

Figure 3(b) showed our survey population’s preferred allocations of rides in a hypothetical city, split

by U.S. political party affiliation. In Figure D.1, we include two similar plots, split by self-identified

gender and race/ethnicity. As in Figure 3(b), we observe that members of each group have a wide

range of preferences for the allocation of spending, suggesting that there is no universal optimal

tradeoff for this scenario and other similar policy domains.

We solicited respondents for our survey on Prolific with the following prompt:

Design a Transportation Assistance Policy

In this study, we will ask you for your opinion on how you would distribute rideshare

assistance to help people get to court.

You will also be asked to answer standard demographic questions at the end of the survey.

Your responses are completely anonymous.

Respondents were then presented with the following introduction at the start of their survey:

Court Transportation Survey

Many people who are charged with a crime must appear in court. If they miss court,

they are often put in jail. Some of these people miss court because it is difficult for them
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to get to the courthouse. For instance, they might not be able to afford transportation.

And so, by providing those people with free rides to court, it is possible to help them

avoid jail time. In this survey, we are interested in your views on how to distribute free

rides to court.

Imagine a fictional U.S. city called “Metropolis.” In Metropolis, Black people typically

live farther away from the courthouse than White people. Because long-distance rides

are more expensive than short-distance rides, a round-trip ride to court typically costs

$20 for White people and $80 for Black people.

Finally, respondents are shown the following summary alongside the graphic in Figure 3(a):

Now imagine that you live in Metropolis. The city has $50,000 to provide people with

free rides to court. How would you distribute the free rides across the city’s Black and

White populations? 50% of the city’s inhabitants are Black, and 50% are White.

The figure below shows five options for spending your city’s budget. Each one has a

different number of rides for White and Black people, but all cost $50,000. $50,000 is

the annual budget for the next 3 years.

Please select your preferred option to distribute the $50,000. Your responses will remain

anonymous.

E Proofs for Section 5.1

In this section we use the shorthand notation px = P(X = x), πxk = P(π(x) = ak), and rxk =

f(x, k).

We now use Lemma 1 to prove sample complexity bounds for our reward settings.

Theorem 4 (Restatement of Theorem 1). Assume the reward is tabular and the costs are known.

Suppose we collect n samples in a round-robin fashion (i.e., for each context x, select the least-

sampled action ak in that context, breaking ties arbitrarily). Then for ϵ > 0, δ > 0, λg ≥ 0,

and

n ≥ 16σ2 |X||A|
ϵ2

ln
4|X||A|

δ
ln

2|X|
δ

we have P(U(π∗)− U(π̂) < ϵ) > 1− δ.
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Figure D.1: Data from the survey discussed in Section 3.2. Here, we show the distribution of respondent preferences
for average spending allocated to Black individuals, split by gender (top) and race/ethnicity (bottom).
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Proof. Proof. We proceed by first showing that if we observe, for each context-action, a sufficient

number of samples then we can guarantee that a near-optimal policy is computed with high prob-

ability. Since lower probability contexts contribute less to the overall utility, a larger estimation

error on these lower probability contexts is permissible, and the resulting number of samples needed

per context will be proportional to the probability of the context. Since we cannot select contexts

to sample (rather they arrive from a known stochastic distribution), we then provide a sufficient

bound on the number of total observations (across all contexts) which guarantees that we will

observe the sufficient number of samples per state-action computed in the first part.

Starting with the first part, we observe that the sample mean estimator of reward has distribution

r̂xk =
1

nxk

nxk∑
i=1

Rxk,i ∼ subGaussian(
σ2

n2
xk

). (E.2)

Recall px is our shorthand for the probability of context x. First note given (ϵ/(2
√

px|X|))-accurate
estimates of the reward model for each context x and action a, Lemma 1 shows the resulting utility

error will be upper bounded by ϵ:

U(π∗)− U(π̂) ≤ 2
∑
x

pxmax
k

|rxk − r̂xk| < 2
∑
x

px
ϵ

2
√
px|X|

=
ϵ√
|X|

∑
x

√
px ≤ ϵ. (E.3)

In the inequality we substituted in the assumed bound on the reward estimation accuracy, and the

last inequality uses the Cauchy-Schwarz inequality.

Using Hoeffding’s concentration inequality we can ensure that after nxk samples for each context-

action pair, our estimated rewards r̂ satisfy the desired accuracy bound |rxk − r̂xk| ≤ ϵ

2
√

px|X|
with

probability at least 1− δ
2|X||A| , where

nxk =
8σ2px|X|

ϵ2
log

4|X||A|
δ

. (E.4)

Therefore using a union bound over all contexts and actions, we obtain a high probability bound

on the utility loss from using the estimated reward models: P(U(π∗)− U(π̂) ≤ ϵ) > 1− δ/2.

Assuming that actions are sampled in a round robin fashion per context, this means

nx =
8σ2px|X||A|

ϵ2
log

4|X||A|
δ

(E.5)

samples are needed per context.

We now prove that for sufficiently large n, with high probability, at least nx samples will be observed

per context.
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Here it will be helpful to index the contexts which we will label as x1, x2, . . . , x|X|. Consider

some number ñ of total data samples , which will be composed of (ñx1 , ñx2 , . . . , ñx|X|) samples of

(x1, x2, . . .) respectively. Then we wish to bound the probability of failure of any of the contexts

not to receive the required number of observations:

P (ñx1 ≤ nx1 ∪ ñx2 ≤ nx2 ∪ . . . ñx|X| ≤ nx|X| |ñ) ≤ δ′ (E.6)

Note we can upper bound the left hand side by the sum of the probability of the individual events.

P (ñx1 ≤ nx1 ∪ ñx2 ≤ nx2 ∪ . . . ñx|X| ≤ nx|X| |ñ) ≤
|X|∑
i=1

P (ñxi ≤ nxi |ñ) (E.7)

We now consider the probability of failure for a particular context xi. For each of the ñ samples,

we can consider a Bernoulli trial, where with probability pxi we observe context xi, else we observe

one of the other contexts. Lemma 56 of Li [2009] proves that less than nxi observations of context

xi will occur, with probability at most δ
2|X| if the number of samples are at least

ñ ≥ 2

pxi

(nxi + ln
2|X|
δ

) (E.8)

Note that nxi + ln 2|X|
δ ≤ nxi ln

2|X|
δ if δ <= 0.5 and nxi >= 2 and there are two or more contexts.

(If there is only a single context, this is simply a multi-armed bandit problem and this part of the

proof is unnecessary.) (|X| >= 2). Therefore to ensure Equation E.8 holds, it is sufficient

ñ ≥ 2

pxi

nxi ln
2|X|
δ

(E.9)

=
2

pxi

(8σ2pxi

|X|
ϵ2

ln
4|X||A|

δ
ln

2|X|
δ

) (E.10)

= 16σ2 |X|
ϵ2

ln
4|X||A|

δ
ln

2|X|
δ

(E.11)

where in the second line, we have substituted in Equation E.4. Note that this bound on the number

of samples ñ is independent of the particular context xi we considered, and therefore will hold for

all |X| contexts.

Therefore the probability of any context xi failing to be observed at least the required nxi times

after ñ (Equation E.11) samples is at most

P (∃xi ñxi < nxi |ñ) ≤
|X|∑
i=1

δ

2|X|
=

δ

2
(E.12)
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We now bound the total probability of failure to obtain a near optimal policy as follows:

P(U(π∗)− U(π̂) > ϵ) = P(U(π∗)− U(π̂) > ϵ|ñx ≥ nx∀x)P (ñx ≥ nx∀ x) (E.13)

+P(U(π∗)− U(π̂) > ϵ|∃xñx < nx)P (∃x ñx < nx) (E.14)

≤ δ

2
× 1 + 1× δ

2
(E.15)

≤ δ, (E.16)

where in the first inequality we have used the fact that all probabilities are bounded by 1 and

substituted in the previous bounds on these failure events.

Now we prove Theorem 2. First, in the following theorem, we prove a result for sample complexity

under an arbitrary static (non-adaptive to the observed outcomes) data collection strategy π. In

the following lemma, we then show that we can design a data gathering strategy π to achieve a

bound that scales roughly like d2/ϵ2.

Theorem 5 (Restatement of Theorem 2). Assume the reward is linear. For any static (non-

adaptive to the observed outcomes) strategy π used to collect samples, let

Σ(π) = E[ϕ(X,π(X))ϕ(X,π(X))T ]

=
∑
x,k

P(X = x) · P(π(x) = ak) · ϕ(x, ak)ϕ(x, ak)T

be the induced covariance matrix. Define a problem-dependent constant

ρ0 = max
x,k

∥Σ(π)−1/2ϕ(x, ak)∥/
√
d.

Then, we can design a data collection strategy such that, for any ϵ > 0, δ > 0, λg ≥ 0 and

n ≥ max{6ρ20d log(3d/δ), O
(
σ2d2/ϵ2

)
} (with cost incurred c ≤ cmaxn),

we have P(U(π∗)− U(π̂) < ϵ) > 1− δ.

Proof. Proof. Let θ̂ be the linear regression estimator and r̂xk = ⟨ϕ(x, k), θ̂⟩. Then by Theorem 1

of Hsu et al. [2014] we have that for n ≥ 6ρ20d log
3d
δ ,

∥θ̂ − θ∗∥2Σ(π) ≤
σ2(d+ 2

√
d log 3

δ + 2 log 3
δ )

n
+ o(1/n) (E.17)
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with probability at least 1− δ. Now by Lemma 1 and Cauchy-Schwarz, we have that

U(π∗)− U(π̂) ≤ 2
∑
x

pxmax
k

|rxk − r̂xk| ≤ 2∥θ̂ − θ∗∥Σ(π)

∑
x

pxmax
k

∥ϕ(x, k)∥Σ(π)−1 . (E.18)

Let c(π) =
∑

x pxmaxk∥ϕ(x, k)∥Σ(π)−1 be a data-dependent constant. From Lemma 2, there exists

a data gathering strategy π̃ such that c(π̃) ≤
√
d.

Combining this with Equation E.18 and Equation E.17, we obtain that if we collect at least

n ≥ max

{
6ρ20d log

3d

δ
,O

(
σ2d2

ϵ2

)}
under data collection strategy π̃ then U(π∗)− U(π̂) ≤ ϵ with probability at least 1− δ.

Lemma 2 (Modified Kiefer-Wolfowitz Theorem). Let Π = {π ∈ R|X|∗K |
∑

k πxk = 1, ∀x} be the

set of context-conditioned policy distributions. Then for any context distribution and feature space,

we can design a contextual data collection strategy π̃ ∈ Π such that

c(π̃) =
∑
x

pxmax
k

∥ϕ(x, k)∥Σ(π̃)−1 ≤
√
d.

Proof. Proof. We adapt the Kiefer-Wolfowitz Theorem concerning G-optimal experimental designs

for our setting where we do not have full control over the sampling distribution, but rather can

only control the policy distribution (not the context distribution).

For our proof, define g(π) =
∑

x pxmaxk∥ϕ(x, k)∥2Σ(π)−1 . Our goal will be to show that minπ∈Π g(π) =

g(π̃) = d and by convexity,

c(π̃)2 = (
∑
x

pxmax
k

∥ϕ(x, k)∥Σ(π̃)−1)2 ≤
∑
x

pxmax
k

∥ϕ(x, k)∥2Σ(π̃)−1 = g(π̃) ≤ d. (E.19)

To show this we will first optimize f(π) = log detΣ(π) and then show that f(π) and g(π) have the

same optimizer π̃ and that f(π̃) = g(π̃) = d. Note that

∂

∂πxk
f(π) =

1

detΣ(π)

∂

∂πxk
detΣ(π) (E.20)

= trace

(
adj(V (π))

detΣ(π)
pxϕ(x, k)ϕ(x, k)

T

)
(E.21)

= trace
(
Σ(π)−1pxϕ(x, k)ϕ(x, k)

T
)

(E.22)

= px∥ϕ(x, k)∥2Σ(π)−1 . (E.23)
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Since f is concave, by first order optimality conditions, for any π ∈ Π and π̃ = argmaxπ∈Π f(π),

0 ≥ ⟨∇f(π̃), π − π̃⟩ =
∑
x

px
∑
k

πxk∥ϕ(x, k)∥2Σ(π̃)−1 −
∑
x

px
∑
k

π̃xk∥ϕ(x, k)∥2Σ(π̃)−1 (E.24)

=
∑
x

px
∑
k

πxk∥ϕ(x, k)∥2Σ(π̃)−1 − d (E.25)

since for any π,∑
x

px
∑
k

πxk∥ϕ(x, k)∥2Σ(π)−1 = trace(
∑
x

px
∑
k

πxkϕ(x, k)ϕ(x, k)
TΣ(π)−1) = trace(Id) = d.

(E.26)

Thus letting πxk = 1
{
k = argmaxk′∥ϕ(x, k′)∥Σ(π̃)−1

}
we have that

g(π̃) =
∑
x

pxmax
k

∥ϕ(x, k)∥2Σ(π̃)−1 ≤ d. (E.27)

But it also follows that for any π,

g(π) =
∑
x

pxmax
k

∥ϕ(x, k)∥2Σ(π)−1 ≥
∑
x

px
∑
k

πxk∥ϕ(x, k)∥2Σ(π)−1 = d. (E.28)

Therefore π̃ minimizes g(π) and g(π̃) = d. Q.E.D.

We note that if we know the context distribution we can efficiently solve for π∗ since by the

arguments of Lemma 2 we can solve the equivalent optimization problem

max
π

log detΣ(π) (E.29)

s.t. 0 ⪯ π ⪯ 1

where Σ(π) =
∑

x px
∑

k πxkϕ(x, k)ϕ(x, k)
T . This is an example of a determinant maximizing

problem subject to linear matrix constraints, which can be solved efficiently by interior point

methods (Vandenberghe et al. [1998]).

It is also possible to derive sample complexity bounds when the reward model is a logistic model. To

our knowledge, though there has been some work on approaches for cumulative regret minimization

under logistic regression, there has not yet been attention to sample complexity bounds for optimal

policy estimation in logistic models. Our results here build on work for logistic function estimation

but are somewhat restricted, as these results depend on problem-specific constants which depend

on the data collection strategy. The provided result does not provide an algorithmic solution and

resulting bound, but it does suggest, as do our experiments, that it may be possible to do this quite
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efficiently.

Theorem 6. Assume the reward is logistic, the costs are known, and that the assumptions D0,

D1, D2, and C of Ostrovskii and Bach [2020] hold (these assumptions define problem-dependent

constants K0,K1,K2, ρ). Also define Σ and r as in Theorem 2. Then, for any ϵ > 0, δ > 0, λg ≥ 0

and

n ≥ O

(
max{K4

2 (d+ log
1

δ
), ρK2

0K
2
1d

2 log
d

δ
, (ρ2r2K2

1d log
1

δ
)/ϵ2}

)
we have P(U(π∗)− U(π̂) < ϵ) > 1− δ.

Proof. Proof. By Theorem 3.1 of Ostrovskii and Bach [2020] (in the well-specified case), for n ≥
O
(
max{K4

2 (d+ log 1
δ ), ρK

2
0K

2
1d

2 log ed
δ }
)
with probability at least 1− δ,

∥θ̂n − θ∗∥2H ≤
K2

1d log
e
δ

n
(E.30)

where H = ∇2Lπ(θ
∗) is the Hessian of the cross-entropy loss evaluated at the true parameter.

By assumption C of Ostrovskii and Bach [2020], we assume that that the covariance matrix Σ =

Covπ[ϕ(X,A)] is bounded above by H by a data-dependent factor ρ, i.e. that ρH − Σ is positive

semi-definite. Thus by Lemma 1,

U(π∗)− U(π̂) ≤ 2
∑
x

pxmax
k

|rxk − r̂xk| (E.31)

≤ 2∥θ̂n − θ∗∥H
∑
x

pxmax
k

∥ϕ(x, k)∥H−1 (E.32)

≤ 2

√
K2

1d log
e
δ

n

∑
x

pxmax
k

ρ∥ϕ(x, k)∥Σ−1 (E.33)

≤ 2rρ

√
K2

1d log
e
δ

n
. (E.34)

Thus it follows that if n ≥ O
(
max{K4

2 (d+ log 1
δ ), ρK

2
0K

2
1d

2 log ed
δ ,

ρ2r2K2
1d

ϵ2
log e

δ}
)
then P(U(π∗)−

U(π̂) ≤ ϵ) ≥ 1− δ. Q.E.D.

We note that the assumptions D1 and D2 are quite restrictive (as explained in Remark 2.2 of

Ostrovskii and Bach [2020]). The corresponding constants K1,K2 can depend on the magnitude

true parameter θ∗ and the data collection policy π. The authors also note that bounding these

constants can be non-trivial, even when the context distribution is known. This makes designing a

data collection strategy π that minimizes the higher order terms of the derived upper bounds much

more difficult than in the linear setting, since this includes K1, ρ, c which all depend on π.
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We now consider bounds on the cost needed to learn a near-optimal policy in the tabular setting.

Corollary 1 (Cost Upper Bounds in Tabular Setting). Suppose we take samples according to the

same strategy as described in Theorem 1, but after getting nxk samples for context x and action k,

we only take the least costly action for that context. Then it is sufficient to spend experimental cost

of

∑
xk

c(x, ak)
8σ2

ϵ2
log

4|X||A|
δ

+ nextramax
x

min
k

c(x, ak) (E.35)

where

nextra =
8σ2|A|

ϵ2
log

4|X||A|
δ

(
1

pmin
log

(
16σ2|A|
δϵ2pmin

log
4|X||A|

δ

)
− |X|

)
(E.36)

to learn a policy π̂ such that P(U(π∗)− U(π̂) < ϵ) > 1− δ.

Proof. Proof. By the arguments of Theorem 1 we need at least nxk ≥ 8σ2

ϵ2
log 4|X||A|

δ samples per

context action pair. Thus we will need to incur at least a cost of
∑

xk c(x, ak)
8σ2

ϵ2
log 4|X||A|

δ .

However, as we argued, we need to take additional samples in order to ensure that we get sufficient

samples for every context action pair. The cost incurred for these additional samples will be

random, since we don’t know which contexts and actions we will need to sample. In the worst case,

we will incur costs maxxmink cxk for all the remaining samples, and thus the total worst case cost

will be

c ≤
∑
xk

c(x, ak)
8σ2

ϵ2
log

4|X||A|
δ

+ nextramax
x

min
k

c(x, ak) (E.37)

where

nextra =
8σ2|A|

ϵ2
log

4|X||A|
δ

(
1

pmin
log

(
16σ2|A|
δϵ2pmin

log
4|X||A|

δ

)
− |X|

)
(E.38)

is the number of extra samples that need to be taken beyond the minimum required to ensure at

least nxk ≥ 8σ2

ϵ2
log 4|X||A|

δ samples per context-action pair. Q.E.D.

Note that if there exists a 0-cost action in every context, then the bound simplifies to
∑

xk c(x, ak)
8σ2

ϵ2
log 4|X||A|

δ .

Also if the costs c are uniform across contexts and actions the bound simplifies to c
(
8σ2|X||A|

ϵ2
log 4|X||A|

δ + nextra

)
.
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Theorem 7 (Necessary Cost Bounds in the Tabular Case). Suppose costs are uniform across

contexts and actions, c(x, ak) = c, ∀x, k, that the context distribution is uniform so that P(X =

x) = 1/|X|, and that the utility function does not consider fairness (λg = 0). Then the expected cost

of any experimental strategy which learns an ϵ-optimal policy in the sense that P(U(π∗)− U(π̂) <

ϵ) > 1− δ is at least O
(
c|X||A|

ϵ2
log |X|

δ

)
.

Proof. Proof. We consider an extension of the hard bandit case considered by Mannor and Tsitsiklis

[2004] in the proof of their Theorem 1. Mannor and Tsitsiklis [2004] show that to ensure that the

right action is chosen with probability at least 1− δ after stopping once Nxk samples are taken for

every context and action in the hard setting when the reward gaps for each context are of size ϵ,

the expected number of samples needed for each context and action is E0[Nx,k] ≥ O(1/ϵ2 log 1/δ).

Consider the environments,

H0 : rx,a0 =
1

2
+

3ϵ

2
, rx,ak ̸=0

=
1

2
, ∀x (E.39)

Hk : rx,a0 =
1

2
+

3ϵ

2
, rx,ak =

1

2
+ 3ϵ, rx,ak′ ̸=0,k

=
1

2
, ∀x. (E.40)

In order to figure out which hypothesis is true and ensure that P(U(π∗) − U(π̂) < ϵ) > 1 − δ the

policy cannot choose the wrong action in more than 2/3 of the contexts. Thus the total expected

cost must be at least

E0[C] = E0

 ∑
k,2/3 of contexts x

cNxk

 ≥ c
2|X||A|

3
O

(
4

9ϵ2
log 2|X|/3δ

)
= O

(
c|X||A|

ϵ2
log

|X|
δ

)
(E.41)

where we’ve applied a union bound to ensure that the right action is learned in all of the necessary

contexts with probability at least 1− δ. Q.E.D.

Note that in more general settings when the costs and context are not uniform, cost-efficient

sampling is more complicated. For example, it may be most cost effective to prioritize data collection

from frequently occurring contexts with large estimated differences in reward outcomes across

actions (and thus with high impact on utility estimation), as well as potential informative context

with low sampling costs. When the utility function includes fairness, it is even more difficult to

reason about where to prioritize sampling effort, because focusing on the contexts with the highest

probability and lowest cost may result in disparities across groups.
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F Experiment Details for Section 6.1

We define a subpopulation of clients for our simulation from case data at the Santa Clara Public

Defender Office according to the following process. First, we restrict our population to clients with

recorded court dates between January 1, 2010 and November 15, 2021, who live within 20 miles

of the courthouse. Next, we limit our population to individuals who have stated that their race

is white, or that their ethnicity is Vietnamese, or those who have stated that Vietnamese is their

preferred language. We limit to these demographic groups to reflect the motivating example from

Section 3.1. Finally, for consistency across case types and differences between court proceedings,

we select only the first post-arraignment appearance for all individuals.

Next, we calculate a feature set x for each case describing: (1) whether the client identifies as

Vietnamese; (2) whether the case is a felony; (3) whether the client identifies as male; (4) the

client’s age; (5) the natural log of the distance, in miles, between the client’s home address and

the courthouse (we normalize distance by dividing by 20 miles—the maximum allowable distance—

so that the normalized distance is negative, with values of higher magnitude being closer to the

courthouse); (6) the number of known failures to appear in the past two years; and (7) the inverse

number of required court appearances in the past two years. We further restrict the population to

only cases which have complete information on all the above attributes. The above process results

in 12,646 example cases for use in our simulation.

With this information, we model the likelihood a client will appear in court with a logistic regression

trained on the above historical population using the stated feature set, with β representing the

vector of coefficients corresponding to each feature. Specifically, we have:

Pr(Y (0) = 1) = logit−1(Xβ).

We modify our simulated population so that the overall population appearance rate is just above

50%, and the appearance rate for Vietnamese clients is just above 70%. To do this, we use the

model above with the fitted coefficients, but make two modifications. First, we change the baseline

appearance rate by adjusting the model intercept. In the historical data we use, appearance rates

hover around 90%, which is unusually high compared to other jurisdictions. For example, in Fish-

bane et al. [2020], which studied court date attendance in New York City, appearance rates were

approximately 60%. To roughly match this appearance rate, and increase the potential treatment

effect of rides and transit vouchers, we set the intercept in our simulation to zero, which results in

an overall population mean appearance rate of roughly 51%. Next, we increase the coefficient for

Vietnamese clients from 0.3 in the empirical data to 1 in our simulation, which sets the average ap-

pearance rate for Vietnamese clients at 71%. This change—in addition to the fact that Vietnamese

individuals tend to live farther away from court—magnifies the tradeoff in spending impact be-
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tween Vietnamese and white individuals in our simulation, given that treatment effects would tend

to be lower, and costs higher, for Vietnamese clients. These plausible values were chosen so that a

reasonable preference for spending parity would be in tension with simply allocating assistance to

those with the highest treatment effect per dollar.

The predicted appearance probabilities from the model described above serve as the base for our

simulation’s structural equation model. To begin, we define three potential outcomes for each

individual, corresponding to appearance in the absence of assistance (k = 0, i.e., that predicted

by the above model), appearance if provided with rideshare assistance (k = 1), and appearance if

provided a transit voucher (k = 2). We do so in terms of the following structural equation:

fY (k, x, u) = 1(u ≤ logit−1(xβ̂ + γ1 · 1(k = 1) + γ2 · 1(k = 2) · xdist))

where we set γ1 to 4 and γ2 to -0.75. Finally, for a latent variable UY ∼ Unif(0, 1), we define the

potential outcomes:

Y (a) = fY (a,X,UY ).

This structure ensures that Y (0) ≤ Y (1) and that Y (0) ≤ Y (2), meaning that receiving any form

of assistance is always better than no assistance. Further, the type of assistance—transit voucher

or rideshare assistance—that is best for each individual varies across the population.

As described in the main text, the utility U is defined by Eq. (1), where we set r(x, a, y) = y,

f(x, a, y) = c(x, a), and λg = 0.0006. In other words,

U(π) = E[Y (π(X))]−
∑
g∈G

λg

∣∣∣EX [c(X,π(X)) | g ∈ s(X)]− EX [c(X,π(X))]
∣∣∣.

The first term in U is the expected number of clients that would show up under the policy π, and

the second term captures our parity preferences. The constant λg was chosen to reflect a preference

for trading off between appearance maximization and spending parity. For the ε-greedy model,

we set ε = 0.1. For both UCB and Thompson sampling, we use the default weakly informative

priors provided by the sim function in arm [Gelman and Su, 2020]. For UCB, we used the 97.5th

percentile estimate of the posterior.

When estimating E[Y (π(a)) | X = x] during policy learning, we use a logistic regression with the

same functional form as the data-generating process above. We started each of our experiments

with a randomly selected warm-up group of 4 people, with at least one male and at least one

Vietnamese client. During this period, the first two clients were assigned to actions k = 1 and

k = 2, respectively. The other two individuals were assigned to control, i.e., k = 0. The treatments

during this warm-up period are not included as expenditures against the overall budget b.
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Figure F.2: Mean spending by method across 2,000 simulations. The budget is illustrated with a dashed line.

For our simulation, we set an average per-person budget of $5. We also set rideshare costs at $5
per mile, and daily transit voucher costs at $7.50, reflecting typical prices observed in Santa Clara

county. Because our inferred policies π∗
i evolve over time, they are not guaranteed to adhere to

the budget constraints. To account for this possibility, if we find ourselves spending more on an

action than is budgeted, we gradually lower the nominal budget for that action until it meets the

target budget (and vice versa for underspending). Specifically, for each iteration i, we compute a

new budget b∗i :

b∗i = b · b · (i− 1)∑i−1
j=1 c(xj , Aj)

, (F.42)

where Aj is the action taken on the j-th individual, and b is the target budget. In Figure F.2,

we show that, in expectation, all approaches included in our simulation spend the allowed budget.

In Figure F.3, we show that across simulations which used RA, UCB, Thompson sampling, or an

ϵ-greedy approach, we spent an amount reasonably close to the intended budget.

For our RA and ϵ-greedy approaches, care must be taken when selecting actions given varying

costs and an overall per-person budget. For example, an RA approach that selects all available

treatments with equal probability could overshoot the budget if rides cost $100 on average and

the per-person budget is $5. To avoid this outcome, we first calculate the expected cost of all

actions—including both costly and no-cost actions—when following random allocation, and then

calculate the proportion p of individuals to whom we can afford to randomly assign an action:

p =
b

c̃
, where c̃ =

1

k

∑
k

EX [c(X, ak)]. (F.43)
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Figure F.3: Distribution of total expenditures, compared to the intended budget, across experiments which used
RA, UCB, Thompson sampling, or an ϵ-greedy approach to allocate treatments. 80% of runs spent a total amount
under 101.5% of the total budget, and 95% of runs spent a total amount under 105% of the intended budget.

Once calculated, we randomly select a proportion p of the population to receive a random action,

and treat the remainder of the population 1−p with the no-cost treatment, which ensures we meet

our budget in expectation.

Our optimization procedure (i.e., our linear program) formally relies on having a discrete covariate

space, but our synthetic population has two continuous covariates: the client’s age and distance

from the courthouse. Treating covariates as discrete—for example, by binning all covariates to

limit the number of possible values—would still require us to learn a policy across an infeasibly

large number of possible values. For example, if we bin all covariates so that each covariate is

represented by no more than ten bins, we would still need to learn a policy across up to 80,000

possible combinations of covariate values. To address this issue, we transfer our continuous setting

to the discrete setting in two steps. First, at the start of our experiments, we draw one random

sample C of n = 1,000 clients, and approximate the full population by a discrete distribution over

this observed sample, with each client assigned probability 1/n. Now, the policies we construct (i.e.,

those produced by our LP) are technically defined only for individuals having covariates matching

those of a client in the initial sample C. Consequently, when making decisions for a new individual

with covariates x, we act according to the learned policy for the most similar client in C, among

those having the same group membership s(x) as the new client. Specifically, let ĥ(x, k) be our

estimate of E[Y (π(a)) | X = x]. Then, for a new client, we define its nearest neighbor NN(x) to
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be:

NN(x) = argmin
x′∈C

s(x′)=s(x)

∥∥∥∥∥ ĥ(x′, ·)c(x′, .)
− ĥ(x, ·)

c(x, .)

∥∥∥∥∥
2

.

Then, for any policy π defined on C, we extend it to a policy π̃ on the full population by setting

π̃(x) = π(NN(x)).

This procedure is insensitive to the number of randomly sampled clients in C. We compared

cumulative observed utility when randomly sampling 1,000 clients for C against cumulative observed

utility when randomly sampling 500 and 2,000 clients. Across 400 simulations of the UCB approach,

the cumulative observed utility at the end of the experiment for both the 500 and 2,000 client

variations was no more than 0.03% different than the cumulative observed utility when C was

composed of 1,000 clients.

To construct Figure 6, we conducted a grid search over different possible random assignments,

varying allocations by 10% at a time, allowing allocations for each costly arm to vary from 0% to

100%. We also explored random assignments with a lower proportion of costly treatments, varying

allocations by 2% at a time and allowing allocations for costly arms to vary from 2% to 8%. We ran

125 simulations of each allocation variation. Aside from the allocation variations set by grid search,

all experiment parameters were otherwise identical to those described in the main simulation (e.g.,

each experiment included 1,000 clients).
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