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Abstract
The New York Police Department (NYPD) is tasked
with responding to a wide range of incidents that are
reported through the city’s 911 emergency hotline. Cur-
rently, response resources are distributed within police
precincts on the basis of high-level summary statistics
and expert reasoning. In this paper, we describe our first
steps towards a better understanding of 911 call activ-
ity: temporal behavioral clustering, predictive models of
call activity, and anomalous event detection. In practice,
the proposed techniques provide decision makers gran-
ular information on resource allocation needs across
precincts and are important components of an overall
data-driven resource allocation policy.

Introduction
The NYPD is responsible for responding to many differ-
ent types of frequent incidents, including emergency 911
calls and crimes in progress. Every week, precinct comman-
ders allocate a limited number of patrol cars to respond to
these events. Patrol cars are assigned to specific geograph-
ical sub-divisions of precincts, referred to as “sectors”, of
which there are typically ten per precinct. In this process,
the primary information considered by commanding officers
is the overall recent history of crime events and the “tradi-
tional” crime patterns that persist in each geographical area.
Precinct commanders make these allocation decisions using
high-level aggregate statistics and mental reasoning, a pro-
cess which may not fully consider the spectrum of call be-
haviors, correlative conditions, and exceptional anomalies in
their precinct.

Much of the recent work in quantifying police-related ac-
tivity has centered around predictive policing. This term, of
rising popularity in the policing community, has been used
broadly to describe the quantified prediction of criminal ac-
tivity in order to intervene before events occur (Perry 2013).
Many of these studies are formulations of mathematical
models of criminal behavior (Berestycki and Nadal 2010;
Mohler et al. 2011; Short et al. 2010; Zipkin, Short, and
Bertozzi 2013; Short et al. 2008). These models may be
useful for understanding the generating processes behind
criminal hotspots, but do not address resource allocation
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issues, or demand for police resources outside of hotspot
locations. A few studies have examined the use of more
data-centric police demand forecasting, primarily focusing
on spatiotemporal anomaly detection (Neill and Gorr 2007;
Woodworth et al. 2013).

In this paper, we outline three distinct techniques that in-
corporate emergency call data — along with other urban
datasets — to provide insight into local demand for po-
lice resources. First, we seek to discover temporal behavior
patterns in local emergency call behavior, across different
time windows and geographical areas. Extracting these pat-
terns will allow precinct commanders to understand differ-
ent types of typical behavior in their precinct in much greater
detail when compared to the overall aggregate statistics that
are currently used.

Second, we predict the future demand for police resources
in high-resolution geographical areas and time bins. Predic-
tion models can incorporate a wide range of conditions that
may correlate with significant changes in demand for po-
lice resources. These conditions can be used to predict de-
mand, and therefore automate the mental guesswork that is
currently required for resource allocation.

Finally, we seek to detect emergency call behavior that is
unusual when compared to an existing “normal” spatiotem-
poral baseline. This method would allow a precinct com-
mander to quickly detect and respond to exceptional events
in their precinct. It would also inform the allocation of re-
sources that are dedicated to respond to extreme or very un-
usual events.

Each area of focus provides immediate benefit to the
weekly decisions of precinct commanders, by focusing on
outputs that are easy to interpret and incorporate in the
decision-making process. These outputs will also be incor-
porated in a future optimized allocation system that will
make evolving recommendations on the distribution of po-
lice resources.

Data
We worked with 2 years of data from the city’s 911 dispatch
systems: the retired Special Police Radio Intelligence Net-
work (SPRINT) system, and its new replacement, Intergraph
Computer Aided Dispatch (ICAD). Much of our analysis fo-
cused on ICAD, which describes each call in greater detail
than SPRINT. Both datasets record every police response to
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Table 1: Datasets

Dataset Date Range Size
911: ICAD 6/2013–12/2013 2.7 million
911: SPRINT 2/2012–5/2013 6.3 million
311 Complaints 2/2003–5/2014 7.4 million

Table 2: 311 Complaint Type Groupings

Groupings Complaint Types
Noise Noise
Street Condition Street Condition, Blocked Drive-

way, Traffic Signal Condition, Ille-
gal Parking

Building Sewer, Water System, Build-
ing/Use, General Construc-
tion/Plumbing

Dirty Conditions Dirty Conditions, Rodent, Sanita-
tion Condition, Missed Collection,
Damaged Tree, Derelict Vehicle

an event, called in by the public or self-initiated by officers,
but excluding events requiring solely Emergency Medical
Services (EMS) and/or firefighters.

311 call data was also included for behavioral analysis
and as a predictive feature for 911 analysis. This dataset in-
cludes not only direct complaints from citizens, but also up-
dates and status reports from other agencies. 311 contains a
high number of distinct complaint categories, so we grouped
the most common complaint types into four overarching cat-
egories, as indicated in Table 2.

Many 311 complaints do not contain location informa-
tion, and many calls do not fall within sector boundaries. For
these reasons, our final sector-labeled 311 dataset contained
6.7 million records. Other open datasets such as weather1

and Primary Land Use Tax Lot Output2 (PLUTO) data, were
employed as covariates in the forecasting model.

Temporal Call Behavior
Our initial step sought to understand typical temporal be-
havioral patterns for calls. These distinct behavioral patterns
highlight peak times of emergency call demand, as well
as highlighting the difference in behavior between different
sectors. We chose k-means clustering with an L1 norm as
a way to extract distinct types of behavior. Behavior was
represented by hourly time series of total emergency call
counts, with separate time series for each sector s, call type
m, and day of week d. Given N = S ×M × D total time
series c1, . . . , cn ∈ <24, the objective function attempts to
find clusters l1, . . . , lj to minimize:

arg min
{lj}kj=1

k∑
j=1

∑
c∈lj

|c− µj |

1http://www.nrcc.cornell.edu/
2http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml

where µj is the mean of points in lj
Data were aggregated to create a 24-hour cumulative call

profile for each type of call (crime or non-crime), in each
geographic region, for each day of the week, and was then
z-normalized. The number of clusters (k=3) was selected
based on a balance of a high silhouette score while main-
taining legibility for precinct commanders. The clusters in
Figure 1 demonstrate three distinct call patterns with shifting
peak hours. Cluster 0 indicates a peak in non-crime calls dur-
ing working hours on weekdays, whereas Cluster 1 shows a
weekday evening peak in crime calls. Cluster 2 includes the
late night weekend activity patterns suggested by anecdotal
evidence from NYPD police officers.

Figure 1: 911 k-means clustering results: cluster 0 peaks dur-
ing the workday hours with primarily non-crime calls; clus-
ter 1 peaks in the evening with primarily crime calls; cluster
2 peaks in the late night hours with mainly crime calls on the
weekend days

Figures 2 and 3 are examples of clustering results by
precinct and sector, respectively, during various time peri-
ods. These clustering maps provide a deeper level of spa-
tiotemporal detail on historical crime patterns to precinct-
level commanding officers. The visual representation of call
patterns will allow officers to identify which sectors histor-
ically require resources during the various shifts, informing
allocation decisions.

Predictive Model
A reliable predictive model of call demand in each sector
will be a central component to optimize precinct-level re-
source allocation. The output of such a model has clear im-
mediate value, along with providing material for subsequent
optimization and detection measures. In the short term, the
output of a predictive model can be used by precinct com-
manders to predict demand and inform where they allocate
resources. In the long term, the outputs of such a model will
be used as a reliable baseline for automated allocation tech-
niques and event detection.

Given that patrol units are assigned in eight-hour shifts
to sectors, and that crime-related calls are the highest pri-
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Figure 2: Summer Crime Clusters by Precinct: the “Late
Night” cluster dominates, as expected, while regions peak-
ing in crime calls during the day include the Upper East and
Upper West sides, which are typically quiet in the overnight
hours

Figure 3: July Crime Clusters in the 26th Precinct on Fri-
days; labels on each sector indicate the average number of
crime calls in that sector for the given temporal specification

ority for response, we built a supervised learning model to
forecast the number of crime calls in each sector for each
shift. We chose to forecast counts specifically because they
are easily understood by precinct commanders and have a
natural connection to both manual and automatic resource
allocation.

Feature Extraction
Most of the extracted features were two statistics – historical
means and medians – for ICAD 911 calls and 311 complaint
calls. These features were calculated over retrospective win-
dows of differing sizes: from as little as one hour to as much
as eight weeks before each prediction. Additionally, we in-
cluded more of the same statistics, but restricted them to ret-
rospective windows over the same day of week and/or time

Figure 4: An illustration of the feature extraction process for
one (of many) prediction targets.

of day. These statistics were calculated not only for the pre-
dicted target, but also for all calls, for every call type, and
for every call outcome. The same statistics were also aggre-
gated for 311 calls over identical historical windows. The
statistics were calculated for all 311 calls, for the complaint
type groupings, for the 20 most common complaint types,
and the 20 most common call descriptors.

In addition to the autoregressive-type features built from
past 911 and 311 data, we also incorporated weather
data, PLUTO building features, and contextual information.
Weather metrics included temperature, humidity, solar ra-
diation, and precipitation. Features extracted from PLUTO
provided information on the characteristics of the sector, in-
cluding the total area and count of each building type (i.e.
two-family residential vs. commercial high-rise) and owner
type, along with land value estimates and building construc-
tion dates. Finally, a number of contextual categorical vari-
ables were included using one-in-K encoding: day of week,
location of prediction bin in day, and the current sector’s
311 and 911 cluster classifications, as produced by k-means
clustering discussed above.

In summary, each sample n contains the count of crime
calls cs,t in a given sector s over an eight-hour period ∆t
starting at t, as well as a feature set xs,t:

n = {xs,t, cs,t}s=1:770,t=0:∆t:T

There are N = S × (T/∆t) samples overall available for
both training and testing.

Each xs,t contains a number of different feature sets, de-
rived from 911, 311, PLUTO, and Weather data:

xs,t = {C911
s,t−τ ,C

311
s,t−τ ,x

PLUTO
s ,xWeather

t ,xContextual
t }

Where τ is the set of retrospective windows, from 1 to τmax,
in hourly units:

τ = {1, 2, 4, ... , τmax}
with τmax chosen as 1,344 hours (8 weeks) back. Over these
retrospective windows, we derive the first moment c̄, second
moment var(c), and median count c̃ of various types of calls.

Initial runs ran on a set of about 2,600 features. In subse-
quent steps, many of the historical counts of 911 and 311 call
records that had extremely low variance and/or many zero-
counts were discarded. Features were also pruned based on
feature importances from early runs with random forest re-
gression. Final runs had comparative predictive power with
just over 300 features. The large majority of this reduced set
of features were the historical statistics on 911 calls.

Model
To mirror how this may be implemented at NYPD, the model
was trained and tested using a “rolling forecast” method, as
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Algorithm 1 Rolling Forecast Prediction Model

for s = 1 to S do
for t = 0 to T by ∆t do

for τ in τ do
C911
t−τ = {c̄ 911

t−τ , var(c 911
t−τ ), c̃ 911

t−τ}
C311
t−τ = {c̄ 311

t−τ , var(c 311
t−τ ), c̃ 311

t−τ}
end for

end for
xs,t = C 911

s,t ,C
311
s,t , C

PLUTO
s , C Weather

t , C Contextual
t

end for
Input: {xs,t, cs,t}Nn=1
for n = nboundary to N do

fit {ĉs,t}n−1
n=1 = f({xs,t}n−1

n=1, w)
predict cn*

s,t = f(xns,t, ŵ)
end for
Output: {cs,t}Nn=nboundary

demonstrated in Algorithm 1. With this technique, each tar-
get is predicted using a model trained on all available histor-
ical data. Modeling begins with a sufficient amount of train-
ing data, noted as nboundary and chosen as 90 eight-hour pe-
riods. As soon as prediction for one date is complete – say,
October 5th, 2013 – the model incorporates October 5th into
the training set, retrains the model, and issues predictions for
October 6th. Although we trained one ensemble model for
the entire city, ongoing work explores building more local-
ized models for smaller geographic areas.

We focused on two classes of models: random forest re-
gression (Breiman 2001) and Poisson regression. We be-
gan with a random forest model due to its ability to han-
dle high-dimensional data and scale up to millions of sam-
ples while capturing nonlinear relationships. Individual trees
used mean squared error to measure the quality of each split,
considering

√
‖x‖ features at each split, trained on a boot-

strapped sample drawn from all N available samples. The
results reported from the random forest model used 100
trees; higher numbers of trees did not result in noticeably
improved performance.

Our Poisson regression modeled the expected call-crime
count of each sector as a log-linear model of the extracted
autoregressive features and the spatiotemporal descriptors of
weather and PLUTO data, as follows:

E(Y |X) = exp(wTX),

where X = {xs,t}Nn=1.

Performance
We began by predicting call counts for entire days using ran-
dom forest regression. Results for one day on this model
are shown in Figure 5. As performance metrics, we used the
RMSE, coefficient of determination R2, and correlation co-
efficient. The relatively high R2 of ∼ 0.7(ρ = 0.83) indi-
cates the presence of a detectable signal.

After predicting on the day-by-day level, we predicted
911 call counts for each 8-hour officer shift. These shifts
take place from 7am to 3pm, 3pm to 11pm, and 11pm to

Figure 5: Random forest model predictions for the 24-hour
period of October 5th, 2013. Sectors are ordered by actual
target count along the x-axis. The red line indicates the tar-
get count of the sector on this date; each dot represents the
corresponding model prediction for that sector.

7am. Results from this level of prediction are shown in Fig-
ure 6.

Figure 6: Random forest model predictions for the 8-hour
officer shifts on October 5th, 2013. Similar to Figure 5, but
predicting on a finer timescale.

The model at this level has R2 of ∼ 0.5(ρ = 0.7), signif-
icantly lower than the previous example and in response to
the more difficult task of predicting at a higher resolution.

Notably, the model tends to over-predict low values, and
under-predict higher values. It is possible that the model can-
not respond to quicker variations in local phenomena given
the absence of features that respond in real-time. Many of
the short-term retrospective features from 311 and 911 are
sparse and likely do not provide enough resolution on the
immediate history preceding a prediction. However, deeper
retrospective features are stable and predictive, indicating
that these descriptors may be better for indicating long-term
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ground level conditions.
Finally, we compared these results over time with other

versions of appropriate models. First, we compare the
rolling forecast model to a nearly identical “extended” fore-
cast, where the model is only trained once on a month of
data. Second, we compare the random forest (RF) rolling
forecast model to the poisson rolling forecast model. R2

over time for all three models are displayed in Figure 7. As
expected, the rolling forecast RF performance behaves as an
upper bound to the extended RF model. The Poisson model
underperforms due to significant overdispersion that is ex-
pected at this estimation level. Ongoing work is looking at
localized Poisson and Negative Binomial models that can
avoid or handle overdispersion.

Figure 7: r2 metrics for three different model types (random
forest rolling forecast, random forest extended forecast, and
poisson regression) over more than three weeks.

The top 10 predictive features for the random forest re-
gression model were almost entirely long-term time-of-day
historical aggregates on the target variable, as shown in Ta-
ble 3. The model’s preference for long-term features is in
accordance with the autoregressive nature of the task that
subsumes the majority of the signal into past counts from
similar hourly period, day and season. The importance of the
time-of-day specific counts highlights the natural variabil-
ity of the number of 911 crime-calls across different hours
of the day and their consistency when examining the same
time-of-day.

Event Detection
“Anomalous” behavior is present throughout the 911 call
data and is due to various events, some well-known such
as natural disasters and social events, and others less obvi-
ous like socio-economic processes. Apart from their effect
on any forecasting model they are also crucial for early de-
tection and appropriate resource allocation.

One of the critical aspects of effectively allocating re-
sources is knowing how to pinpoint regions of interest that
may require a modification of police resources. Event detec-
tion, or spatial cluster detection, is a technique that identifies

Table 3: Random forest model: top features

Feature Importance
c̄ crime callsτ=42 days , same time of day 0.063
c̄ crime callsτ=35 days , same time of day 0.056
c̄ crime callsτ=21 days , same time of day 0.046
c̄ crime callsτ=49 days , same time of day 0.044
c̄ crime callsτ=56 days , same time of day 0.041
c̃ crime callsτ=42 days , same time of day 0.040
c̃ crime callsτ=56 days , same time of day 0.038
c̃ crime callsτ=35 days , same time of day 0.036
c̄ crime calls in progressτ=56 days , same time of day 0.035
c̄ crime callsτ=28 days , same time of day 0.035

spatial regions where the value of some quantity, e.g. 911
crime-call count, is significantly higher than expected, given
some underlying baseline quantity. These quantities vary by
application domain, but for police resource allocation count
ci represents the number of 911 calls in a given area si, while
the baseline bi is the historical number of expected calls for
that area si.

Anomalous Spatial Cluster Detection
We employ Neil’s Expectation-based Poisson scan statis-
tic model (Neill 2009) whch was derived from Kulldorff’s
population-based Poisson scan statistic (Kulldorff and Na-
garwalla 1995) and is widely used in the epidemiological
community for finding significant spatial regions of dis-
ease outbreaks. The technique provides a statistically ro-
bust way of detecting spatial overdensities, or spatial re-
gions that are likely to be significant. Neill’s statistic as-
sumes that the regions si are aggregated to a uniform two-
dimensional, N×N grid G, and we search the set of rectan-
gular regions S ⊆ G. The counts cs,t are Poisson distributed
with cs,t∼Poisson(qs,tbs,t), where qs,t is the (unknown) under-
lying call rate and bs,t represents the known historical num-
ber of expected calls for area region si. The method searches
over a set of spatial regions, identifying regions which max-
imize a Poisson likelihood ratio statistic, given by

F (S) =
P (D|H1(S))

P (D|H0)
,

where P (D|H) is the Poisson likelihood given hypothe-
sisH and the null hypothesisH0 assumes qs,t =1 everywhere
(counts = expected). Under H1(S), we assume that qs,t=qin,t
in S and qs,t = 1 outside, for some qin,t > 1 (counts > ex-
pected in S). Once we found the region S∗ = arg max

S
F (S)

of grid G, and its score F ∗ = F(S∗), we must determine
the statistical significance of this region by randomization
testing. This is done by randomly creating a large number
R of replica grids by sampling under the null hypothesis.
The highest scoring region and its score is tracked for each
replica grid, and a p-value of S∗ is calculated given by

ρS∗ =
Rbeat + 1

R+ 1
,
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Algorithm 2 Expectation Based Poisson Scan Statistic

Input: C 911
s,t , G

for s = 0 to S do
Likelihood Ratio Statistic: With grid G, calculate

F(S) based on H1(S) and H0 for each region. s
Max Region: S∗ = arg max

S
F (S) of grid G

Max Score: F ∗ = F (S∗)
end for
Input: S∗, F ∗
for r = 0 to R do

for s = 0 to S do
calculate: Likelihood Ratio Statistic, Max Region

and Max Score for replica region. s
if: Max Score > F ∗, Rbeat += 1

end for
end for
calculate: ρS∗

Output: ρS∗ , S∗

Figure 8: Most significant
spatial region cluster iden-
tified on July 4th, 2012 in
Manhattan

Figure 9: Most significant
spatial region cluster iden-
tified (in red) on July 6th,
2012 in Staten Island

where Rbeat is the number of replica grids with F ∗ higher
than the original grid G.

The main disadvantage of the proposed approach is that
it is computationaly expensive. It requires exhaustively
searching over all rectangular regions, both for the original
and the replica grids. The computational complexity for an
N×N grid G with R replica grids is O(RN4). In order to
tackle this we implemented an overlap kd-tree data struc-
ture (Neill and Moore 2004) which improves efficiency with
computational complexity of O(N logN ).

Event detection of 911 calls

For validation, we first looked at historical days that were
likely to be “eventful” such as major holidays or weather
events. In the case of July 4th, 2012, we successfully de-
tected the most significant cluster region in Figure 8 as adja-
cent to the fireworks barges along the Hudson River.

Finally, we focused our search area on Staten Island from
July 4-10, 2012, and found significant clusters on the west-
ern coast of Staten Island as depicted in Fig. 9. Upon ex-
amination we discovered that this area is heavily industrial
with many manufacturing buildings and the reason for this
significant clustering of 911 calls is due to unexpected com-
mercial alarms that led to a series of “unfounded” 911 calls.

Figure 10: Overview of resource allocation framework, in-
cluding components described in this paper

Discussion and Conclusion
Additional steps are underway to improve the performance
of the forecasting model. Apart from handling overdisper-
sion, ongoing work is focusing on i) extracting better pre-
dictive features from 311, PLUTO, and weather data sets, ii)
fitting localized models for each sector that are later com-
bined (Fink, Damoulas, and Dave 2013), iii) the inclusion of
longer-term historical features and shorter-term “dynamic”
features, and iv) more training data to capture seasonal ef-
fects. As part of this effort, we are compiling other data
sources, including social network data, that could explain
a larger percentage of the variation — especially in extreme
cases where behavior is unusual compared to the past.

Event detection will also be improved in two ways. First,
implementing a Bayesian scan statistic (Neill, Moore, and
Cooper 2006) rather than derivations of the Kuldorff statis-
tic, would allow us to monitor several event types simul-
taneously in a probabilistic framework and gain computa-
tional efficiency by avoiding randomization testing. More-
over, this would enable us to apply the statistic at a higher
resolution, providing more information on anomalies in fine-
grained spatial regions. Second, the predictive model’s fore-
cast of counts will also be integrated into the scan statistic as
a more developed baseline for the likelihood ratio statistic.

This work represents the first steps in building a compre-
hensive system to effectively allocate police resources, us-
ing all three techniques discussed in this paper (Figure 10).
In this framework, there are both immediate practical uses
for the outputs of our model, as well as additional long-term
goals that will be aided by these techniques. The outputs
from this work can be used immediately by precinct com-
manders when allocating resources. However, they will also
feed into an overarching resource allocation scheme as criti-
cal inputs for understanding and forecasting demand. Given
the size of New York City’s police force — the biggest in the
United States — the opportunities for improving resource
allocation are significant and potentially very impactful to
human quality of life in cities.
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